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This paper presents an original formulation of two-point boundary value and eigenvalue
problems expressed as a system of first-order equations. The fundamental difference between
the new method and other methods based on a first-order approach is the introduction of
conditions of an integral character to supplement the simultaneous set of first-order equations,
which are hence never regarded as an initial value problem. The consideration of integral
conditions leads to establish a class of linear multipoint schemes for the numerical solution of
boundary value problems for ordinary differential equations. Furthermore, the global charac-
ter of the integral conditions (nonlocality) combined with the block structure of the system
of algebraic equations allow dealing with stiff problems by means of the classical procedure
of iterative refinement introduced by Wilkinson. The properties of the numerical schemes are
illustrated by the solution of linear and nonlinear problems and by the accurate and efficient
determination of some eigensolutions of a difficult problem of hydrodynamic stability. The
proposed method is conceptually simpler and numerically more convenient than existing
initial value methods, while still retaining all the advantages of a formulation based on a
first-order system. € 1990 Academic Press, Inc.

INTRODUCTION

Numerical methods for solving ordinary differential equations supplemented with
conditions at both extremes of the integration interval can be divided into two
classes: methods which solve the second- or higher order equation directly as an
elliptic problem in one dimension [ 1, Chap. 4; 2, Chap. 7; 3, Sect. 8.7.2], and initial
value methods which transform the high-order differential equation into a system of
first-order equations [ 1, Chap. 8; 3, Sect. 8.7.1; 4, p. 359]. Methods belonging to
the first class can be applied to solve variable-coefficient and nonlinear problems
(see, e.g., [2, p.355]) and have been implemented using spline collocation to
provide very efficient schemes for dealing with singular perturbation problems [5].
Nevertheless, a greater attention has been paid to methods relying on a first-order
system, mainly because the corresponding schemes can be used to solve boundary
value problems of any order and with an arbitrary order of accuracy. Among the
various techniques proposed so far, four methods are the most frequently employed.
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In the invariant imbedding method [6,7] the original ordinary differentia
problem is reinterpreted as a suitable cross section of a more general, partia
differential, problem. The superposition or shooting method [8-107 is based on the
evaluation of an influence matrix relating the values prescribed on the boundaries
with the quantities to be determined at the initial point of the integration intervar:
the siabilized variant of this method for nonlinear probiems, named multiple or
paraliel shooting, requires to solve n-fold versions of the first-order system, where
n is the number of shooting points. The compound-marrix method T11-137 relies
instead on the integration of first-order systems of equations for certain minors o
the solution matrices, the number of minors depending on the differential order o
the original equation. Finally, in the very recent continuous orthonormalization
method [14-16] the linear independence of the solution components and the
numerical stability during the integration process are assured by a nonlinearization
procedure which in general increases the total number of first-order equations tc be
solved.

A feature common to all these methods is the use of numerical algorithms and
computer software developed for the time integration of initial value problems. The
solution of the differential equation with data prescribed at both interval extremes
i5 then accomplished by integrating the various aforementioned first-order systams
in both directions and by determining the lacking initial values so as to match the
available final conditions (the most popular computer codes for boundary value
problems are discussed in [17]). These methods have been greatly perfected iz the
last years and they can now be regarded as highly sophisticated numerical proce-
dures capable of harnessing unstable initial value probiems, including strongly
oscillatory and extremely stiff problems. However, there are still situations wherz
the inital value methods encounter numerical difficulties. For example, the
orthonormalization method combined with an adaptive Runge-Kutta integration
procedure experiences cenvergence difficulties when increasing the number of
projection points beyond a certain limit, in the relatively simpie linear probiem
considered as the first test case in [16]. Most difficuities of this type are due to
the fact that “even for very well-conditioned boundary value problems the corre-
sponding initial-value problems can be very ill-conditioned.” to use the words of
Fox [187. This issue has been much debated in the literature [19-217], leading 1o
the discovery of interesting relationships between the various methods of this kind,
see also the recent monographs [22-247.

The aim of the present work is to describe a new numerical method for the
solution of boundary value problems expressed in the form of & first-order system.
making no reference to concepts pertaining to the class of initiai value problems. As
it turns out, the decision of not to decompose the problem into a collection of
initial value subprobiems is indeed very convenient in order to formulate the
discrete approximations most appropriate for ordinary differential problems the
originary nature of which is elfiptic. Interestingly enough, such an investigaticn hes
veen originated from some recent studies on the numerical solution of the vorticity-
stream function equations for incompressible viscous flows [25-29]. It has been
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316 QUARTAPELLE AND REBAY

shown that, when the fourth-order biharmonic equation for the stream function is
replaced by two Poisson equations for the variables vorticity and stream function,
the pair of no-slip conditions originally attached to the stream function translate
into conditions of an integral character for the vorticity. Generally speaking, the
integral conditions have the crucial property of preserving the functional equiv-
alence of the lower order equation system with the original higher order differential
problem. It is therefore logical to expect that conditions of a similar nature would
arise when a high-order ordinary differential problem is formulated as a system of
first-order equations. For example, in the typical case of separated-end conditions
supplementing a second-order equation, the reduction of the differential order
produces a very simple integral condition which expresses the normalization of the
auxiliary variable in terms of the boundary values prescribed for the original
unknown.

More generally, the occurrence of conditions not of the usual boundary value
type is found to play a decisive role in the present context of ordinary differential
equations. In fact, the integral conditions: (i) allow the establishment of a class of
linear multipoint schemes which represent the extension to boundary value
problems of the linear multistep schemes developed for initial value problems;
(ii) can dispense with the use of pivoting, and (iii) make the iterative refinement of
Wilkinson for ili-conditioned systems the only tool needed to deal with stiff and
ill-posed problems. In practice, the proposed formulation is such that the solution
of two-point boundary value problems expressed in first-order form becomes an
ordinary matter of numerical linear and nonlinear algebra. At the same time, the
profile of the block matrices is bordered multidiagonal and this structure can be
easily preserved by properly choosing the direction in the elimination process.
Therefore, the computational efficiency of the new algorithms is at least equivalent
to that of the classical initial value techniques of the same order of accuracy.

All the essential features characterizing the new formulation are presented in this
paper, the content of which is organized as follows. In section 1 the ordinary
differential problem is formulated and the nomnlocal character of the conditions
supplementing the set of two simultaneous equations associated with a second-
order boundary value problem is discussed for both separated and nonseparated
conditions. Section 2 describes linear multipoint schemes with increasing order of
accuracy for the solution of systems of first-order equations supplemented with con-
ditions of an integral character. The fourth-order accurate scheme is described in
some detail since it is believed to be a valuable alternative to the standard Runge-
Kutta integration in the solution of boundary value problems. The section
terminates by illustrating how the classical procedure of iterative refinement
introduced by Wilkinson can be used in conjunction with the proposed schemes to
solve stiff and ill-posed problems. Section 3 shows the form of the integral
conditions for problems with differential order higher than two, mainly for the case
of the fourth-order equation, i.., the equation for an elastic beam according to the
linearized Euler-Bernoulli theory. In Section4 the proposed algorithms are
employed in the solution of some examples, comprising linear and nonlinear
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problems of increasing differential order and the Orr-Sommerfeld eigenvalue
problem for plane Poiseuille flow. The last section is devoted to the concluding
remarks.

I. FIRST-ORDER SYSTEMS WITH TwoO-PoOINT CONDITIONS

Consider the linear system of first-order coupled equations
Vo= A(x) y+r(x), (1.0

where v and r are m-vectors while 4 is an m xm matrix. The differential system
(1.1) is to be solved over the finite and fixed interval [a, b] subject to the so-called
two-point boundary condition

Ly(a)+ Ry(b)=7, 11.24

where L and R are m x m matrices and 7y is a known m-vector.

1.1 Two-Point Conditions, Boundary Values, and Nonlocality

When the rank of both L and R is equal to m, a case to be considered rather rare
in the applications, condition (1.2} is called nonseparated. In this case, Eq. (1.2}
prescribes a (linear) relationship between the values of the solution vector y at the
end points x =g« and x = b of the integration interval-——the most nonlocal condition
for a (vector-valued) function defined on the interval. With this understanding,
denoting condition (1.2) as a “two-point boundary condition” appears confusing
since Eq. (1.2} is not a boundary condition at all. To avoid such a misinterpretation.
condition (1.2) will be here referred to simply as a nwo-point condition. The present
formulation deals with the case of full-rank matrices £ and R by taking Eqg. (1.2}
merely as it stands, namely as an algebraic equation relating the unknown vectors
yiay and y{b) {sce below).

Most frequently, however, the ranks of L and R are deficient. This occurs whern
the values of some components of the vector unknown are prescribed at the end
points x =¢ and x =b. In the literature these types of conditions are referred to as
separated boundary conditions.

In the simplest case m=2, ie., p= (3", »*"), two basically different kinds of
separated conditions are encountered. The first form occurs when the values of
different components are specified at the ends of the interval, e.g.

(ol

' a)=qa, y2(b)y=4. (1.3,
Conditions (1.3) obviously represent a nonlocal conditioning for the vector
unknown ) since boundary data are available at both end-stations and for »'!
and y?. This type of conditions will be dealt with as a particular case of
nonseparated condition (1.2).
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318 QUARTAPELLE AND REBAY

The second form of separated conditions arises when no data are available for
one component, say y'"), whereas the values of only the other component y® are
prescribed at both ends of the interval, namely,

yNa)=a, yI(b)=p. (1.4)

This type of separated-end conditions is structurally different from the previous one
and plays a crucial role in the present formulation. It is encountered whenever the
second-order boundary value problem

Y'=F(Y,Y,x), Y@a)=oand Y(b)=4, (1.5)

for the scalar unknown Y is reformulated as a system of two first-order equations
by introducing the auxiliary variable Z = Y". Then, from the definition of the new
unknown Z and the two boundary conditions imposed on the original unknown Y,
it is straightforward to obtain

b b
f de:j Y dx=Y|’=Y(b)— Y(a)=f—a. (1.6)

a

Therefore, the second-order problem (1.5) is equivalent to the following system of
two first-order equations

7' =FZ, Y, x), J'b Zdx=f—a,
a (1.7)
Y=2 Y(a)=a or Y(b)=4.

Each variable of system (1.7) is supplemented with its own condition: the first
equation is supplemented with an integral condition, here simply a normalization
condition in terms of the boundary data prescribed for the original unknown Y,
whereas the second equation can be solved subject to either boundary condition for
Y. For example, if the left boundary condition Y{a)=a is imposed, the defining
equation Z=Y" and the integral condition for Z give

Y(b):y(a)+[b2dx=a+/3—a=ﬁ, (1.8)

Ya

so that the right boundary condition for Y is also satisfied. The elliptic character of
the second-order problem (1.5) implies an inregral and hencefore nonlocal character
in the conditions for the system of first-order equations (1.7). By summarizing, the
unusual property of nonlocality is found to be attached to all types of conditions
for the system (1.1), irrespective of their separated or nonseparated character.



LINEAR MULTIPOINT METHOD

(9]

1.2. An Alternative Interpretation

The integral condition (1.6) can be also interpreted in the light of the general
theorv of the compatibility conditions formulated by Lanczos [30]. Let the
problem defining the single unknown 7,
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be coasidered as an independent problem to be solved after the function Z has been
already determined. The data for such a problem, i.e., the source term Z{x} and the
boundary values x and f5, cannot be specified in an independent manner because
only one integration constant is allowed in the solution of a first-order differential
equation. Since there are two boundary conditions, problem (1.9} can admit 2
solution only on condition that the data Z(x), » and f satisfy a comparibility
reiationship, usually known as the Fredholm criterion or alternative. Foliocwing
Lanczos’ analysis, an overderermined problem associated with a given differential
operator is subject to compatibility conditions which require that the right-hand
side of the equation be orthogonal (for homogeneous boundary data) to the linear
manifoid spanned by the solutions of the homogeneous adjoint problem |[3C,
Chap.4]. The argument is a direct consequence of the Green identity for tne
differential operator of the considered equation and its adjoint. The application
o: this generai principle to the problem (1.9} is immediate and relies on ihe
well-known formuia of integration by parts, that is,

~b
| (X'Y+XYYde=[XY]), (1.

Ya

(99

where X{x) and Y{x) are arbitrary differentiable functions. The differential operator
associated with problem (1.9) is the first derivative supplemented with boundary
conditions at Soth the extremes of the interval [a, 5]. By virtue of the integration-
by-parts formula, the adjoint operator is the first derivative with a negative sign
and without any boundary condition. It follows that in the specific case examined
here the linear manifold to be used in the orthogonality relationship contains oniy
the constant functions. Therefore, there is only one linearly independent condition
stemming from the orthogonality principle and it assumes the following form

nb
sz:nm—nmzwﬁ. (111}

a

The nonhomogeneous character of condition {1.11) is a consequence of the fact
that the boundary conditions of the overdetermined problem (1.9) are non-
homogeneous. Such a compatibility condition is coincident with the integra!
condition {1.6) derived previously.

It can be noted that the reduction of the second-order equation into the form of
a first-order system is not unique. In fact, the set of equations will depend on ths
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form of the relationship used to define the auxiliary or intermediate variable Z and
to each specific definition it will correspond a different form of the integral condi-
tion associated with that variable. Anyway, whenever separated conditions of type
(1.4) are prescribed, an integral condition will be established to supplement the
system of first-order equations which, in the general case of a nonlinear problem,
will be written in the form

y'=f(y, x). (1.12)

It is important to recognize that the very presence of a condition not of the usual
boundary value (local) type prevents the interpretation of the first-order system
(1.12) as an initial value problem and therefore discourages the use of marching-in-
time or step-by-step integration procedures. On the contrary, the structure of the
discrete approximations introduced in this paper depends essentially on the fact
that the integration associated with the considered problem is definite and that the
conditions supplementing the first-order system have a noniocal character. By
construction, these approximations will be appropriate also in the presence of
full-rank two-point conditions (1.2) as well as conditions of multipoint type.

2. LINEAR MULTIPOINT SCHEMES

It has been shown that the differential system (1.1), or its nonlinear equivalent
(1.12), is supplemented always with conditions of a nonlocal character. They can be
the nonseparated two-point conditions (1.2), the separated conditions (1.3), or the
integral condition (1.6). The complete problem is now descretized by means of the
finite difference method over a uniform mesh of size A= (b —a)/(N — 1), namely

x;=a+(j—1)h, j=12, ., N (2.1)

Due to the integral-value character of the problem in the proposed formulation, the
first-order system will be discretized using only central differences.

2.1. Second-Order Scheme

A second-order accurate scheme is obtained by approximating the differential
system (1.1) at the mid-way point x;,,, and using a two-point computational
molecule over the entire interval, to give

Yiv1 =V

1
h E [A(Xj))’j‘f'A(xj+1)}"j+1]

+%[r(xj)+r(xj+1)], 1<j<N—L. (2.2)
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This scheme is well known and is called trapezoidai rule, see, e.g., [9. p. 281. In the
present work, the system of algebraic equations in the mx N unknowns
{¥:s 32, - V) 18 made complete by including the two-point condition (1.2), which
in discretized form becomes

Ly +Ryv=7. {2.3)

In the case of separated-end conditions as in (1.4), cne component of the vecior
equation {2.3) is replaced by a discretized version of the integral condition (1.6}. To
guarantee the second-order accuracy of the approximation, the following cuad-
rature formula is employed for the considered component, sav "/,

G+ W N = (24
After multiplication by A, Eq. (2.2) gives

(—1—3hA))y,+ (1 =3R4, Dy, =3hlr+r, ) I<jSN—L, (2.5

o

e
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where 4,=A(x;} and r,=r(x;). According to (2.3)-(2.5), the equations of t
second-order scheme constitute a linear system of mN algebraic equations, ¢
matrix of which has a block structure, with nonzerc m x m1 blocks on the main
diagonal, on the lower codiagonal and on a single (full) row. If the equation corre-
sponding to the two-point or integral condition is placed at the top of the system
of equations, one obtains the block bordered bidiagonai matrix shown i Fig. 1. all
the coefficients displayed being actually m x m matrices.

When an integral condition (2.4) is present, g,#0 for ail ;. In the case of non-

separated conditions (2.3), g,=L and gy=R, whereas g,=g,= ... =g, ,=0.
& & & - EN-1 BN
a b
a b
ay_y by
ay_y by

FiG. 1. Profile of a bordered bidiagonal matrix.

581/86/2-3
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All the coefficients g;, 1<j< N, are however still retained in the profile of the
matrix during its (block) factorization in order to take into account automatically
the nonlocal effect brought about by the condition (2.3). It can be noted in passing
that retaining this full row in the matrix profile accomplishes quite naturally and in
a general form what is achieved through an artifact by the multiple shooting
method in the particular case of separated-end conditions, see [9, p. 5]. The profile
of the matrix of the linear system in the present formulation is thus always the
same, independently of the separated or nonseparated character of the conditions.
The scheme appears to be fully implicit due to the presence of one full row.
However, this feature does not compromise the computational efficiency of the
method. In fact, the linear system associated with the bordered bidiagonal matrix
can be solved by a Gaussian elimination which preserves the profile simply by
starting at the bottom and proceeding to the top row (UL factorization).

The key property of Eqs. (2.2) making the trapezoidal scheme combined with the
integral condition a linear multipoint scheme for boundary value problems lies in
the fact that, by summing the discrete equations (2.2) all together, the left-hand side
yields the difference y, — y,, whereas the right-hand side provides an approxima-
tion to the definite integral coincident with the quadrature formula (2.4). The
relevance of such a property in the discretization of boundary value problems
expressed as a simuitaneous set of first-order equations has not been realized so far,
although higher order multipoint schemes are obtained simply by searching for
algebraically consistent approximations to the first derivative and the definite
integral.

2.2. Fourth-Order Scheme

— P . S . SO ool t . .

12 3 4 =10 i+ N-2N-1 N
# *—o |
‘f *—o—o 1
| oo 4
{ M ¢

FiG. 2. Computational molecules of the fourth-order scheme for boundary value problems.
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therefore to make use of formulas of symmetric type. This restriction combined with
the need of obtaining the correct number of discrete equations indicates that the
approximation of the equation ¥’ = f{y, x) must be evaluated midway between the
grid points. It follows that the (general) computational molecule of a scheme for
first-order systems associated with boundary value problems contains an even
number of grid points. The advantages of discretizing first-order equations midway
between the grid points have been already pointed out by Fox [1, p. 141 1. In the
case under examination, this location of the approximation becomes mandaiory
due to the definite character of the integration in order to obtain the correct
number of equations.

The computational molecule for the first scheme with an order of accuracy higher
than the second will contain four points, except near to the boundary, where a
three-point molecule, as illustrated in Fig. 2, is to be used. For instance, at the left
end of the interval, the linear three-point,’ fourth-order accurate formula

[

—Sr by =R A ) 26;

will be used, where f,= f(y,, x;). At any internal location, the equation )" = {1, x}
will be approximated by the linear four-point general relationship

o ¥, Foay ¥yt Yot as i s=hBo /B i B S B (27)

for 1 < j< N — 3. The coefficients o, and B,, k=0, 1, 2, 3, are given in [ 31, p. 43
as a function of two parameters ¢ and b:

do= —1ib Bo=25(1+a+9b)
a0, = +3(a+b) f=g5(—5—13a+19b) 58
oy=—41+a)  By=%(19—13a— 55} '
2= +1 By=g5(9+a+b

Hers, the normalization Y, f,= (1 —a+b)/2 has been adopted. For arbiurary
values of a and b, approximation (2.7) is fourth-order accurate, whereas for the
particular value a= —2 and b=1 it becomes sixth-order accurate. However, the
overall accuracy of the scheme will be necessarily limited by the lower accuracy of
the three-point approximation to be used near the boundaries. Therefore, the values
of a and b will be chosen so as to reproduce the effect of the definite integration.
exactly, namely, y,— y,. To this end, the summation of the left-hand sides of all
the discrete equations must give a complete cancellation of the coefficients of the
unknowns {1y, 35, .., ¥y} €xcept for the first and the last ones, y, and y,. From

"In the present context of boundary value problems, the linear approximation formulas are denoted
by the number of points used, instead of the number of steps as usual in the literature on initial value
problems.
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Egs. (2.6)-(2.8) one obtains ¢ =0 and b= 1. Then, the linear four-point formula
(2.7) becomes

1 1 L., 1
=3 Yt 5¥ii1—3Yieat 3V

=/‘l('25]fj+% j+1+% j+2+% j+3)- (29)

Furthermore, the summation of the right-hand sides of all the discrete equations
(ie., Eq. (2.6) plus Egs. (2.9) for 1 <j< N —3 and the equation similar to Eq. (2.6)
valid for the right end of the interval) will provide an approximation to the definite
integral with a consistent order of accuracy. In fact, the summation is found to give
the expression

J
7—;-(9f[+28f2+23f3+24f4+24f5
+ o+ 24 3+ 232+ 28f o +9SN)- (2.10)

The coefficients in (2.10) are coincident with the weights of the Gregory quadrature
formula with end corrections of degree of precision three reported by Fox [1, p. 19],

1 r? 1 1
/_zj ydx=§yl+y2+y3+ +}’N71+§}"N

TR 11
—_—A=— 2 o _ 2 ,
+<12 24 >y‘+< izV 24V>”
{
= ﬁ (9}71 + 28_}"2 + 23_}73 + 24}"4

+ o+ 24y 3 +23pn 2+ 28y +9n), (2.11)

where 4 and V are the forward and backward difference operators. Therefore, in the
fourth-order accurate scheme this formula will be consistently used to approximate
integral conditions of the type (% y") dx=pf—«, whenever they are present. The
patterns of all the coefficients «, and f, of the resulting scheme are shown in Fig. 3.
The first row of the matrix is left void since the first equation of the (block) linear
system is associated with the two-point or integral conditions.

Expression (2.11) has been derived by assuming that the two special three-point
computational molecules do not overlap, namely, N = 6. Actually, the values of the
coeflicients in the left-hand side of Eqgs. (2.6) and (2.9) are such that the aforemen-
tioned cancellation holds irrespective of the overlapping of the special molecules,
namely, it holds also when N=4 or N =5. In these particular cases, a fourth-order
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Fi6. 3. Fourth-order scheme: Pattern of the coefficients «, and j,.

approximation is still possible provided that the quadrature formula (2.1} is
replaced by the following modified integration rules

n

R 1 . ‘
N=4: J ydx = (99, + 2752+ 2755+ 933 .
N"S-l r v d _i(g 287, + 221, + 28y, +9v.) o
=S |y demgg (O34 28yah 22rs 4 28y )

It is important to remark that, once the discretized equations have been established,
their form is valid irrespective of the type of separated or nonseparated conditions.
In the particular case of separated-end conditions with the value of a single compo-
nent prescribed at both the extremes, if the proper discrete equations are used, it
is equivalent to impose the two boundary conditions or, alternatively, the integral
condition together with either of the two boundary conditions. The choice involving
the explicit use of the integral condition is, however, the optimal one simce it
avoids by construction the need of pivoting during the factorization process, each
component of the unknown y= (3", 3%, ., ¥} being provided with its cwn
condition.

The numerical scheme based on Egs. (2.6), {2.9) and on the condition {2.11) or
possibly (2.3) is & nonmarching method for solving first-order systems y'= f(y, x}
stemming from boundary value problems for ordinary differential equations. The
scheme has a fourth-order accuracy uniformly over the entire integration interval.
Surprisingly enough, the special computational molecules employed near the
boundaries are essential to define a higher order approximation for boundary value
problems instead of being a factor of complication as in the case of initial vaiue
problems. It is noted that the general computational molecule within the interval is
based on four points, very similarly to the most common, fourth-order accurate,
Runge-Kutta integration method. However, the proposed method is basically dif-
ferent from any Runge — Kutta scheme. In fact, the linear multipoint approximation
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is, on the one hand, centred and fully implicit, in compliance with the nonlocal
character of the conditions supplementing the first-order system, and, on the other
hand, coupled, due to the block structure of the system of discrete equations. In
the case of a linear problem, the matrix profile of the linear system of algebraic
equations is bordered quadridiagonal and is shown in Fig. 4.

The equation corresponding to the integral or two-point conditions is placed at
the top of the linear system. With such an ordering, the fill-in of the matrix is
avoided by starting the elimination at the bottom and proceeding to the top row
of the matrix (UL factorization). Thus, in the proposed method there is no need for
sophisticated procedures of Gaussian elimination, such as those described in [24].

2.3. Sixth-Order Scheme

The linear multipoint scheme with a sixth-order accuracy can be derived using a
similar reasoning. In this case, the general computational molecule contains six
points and there are two special molecules at each extreme of the interval, one with
five points and another with four points. The coefficients «, and S of the smallest
molecule are fixed by the condition of a sixth-order accuracy and are given by

81 &2 &3 84 gs - . En-2 8N-1 8N
bl C2 d3

a) bz [} d4

ay_s by_3 cy_p dy_)
ay-3 by_y cy_y dy

ay.y bn_i cn

FiG. 4. Profile of a bordered quadridiagonal matrix.



i

e}

LINEAR MULTIPOINT METHGD ;

[

expressions (2.8) with a= —3 and b =1. After the renormalization 3 , i, =1, one
obtains
11 27
& =X = oo %= A3 s ,
’ (2.13;

+B=Ps=1 +h:=8:=13

The values of the coefficients =, for the two larger molecules are determined using
the parametric representation of the five-point formula given in [311 and by
imposing the condition of cancellation introduced previousiy. The values of the
coefficients «, and B, for the five-point molecule are easily found to be, using the
normalization ¥, f,=1,

49 38 e

—%; = U5 = 135~ Uy = —%4 = 135» Ay =4, ~ i an
[
— — 47 — — 166 — __ 56 )
+ﬁl_ﬁ5_360’ ﬁ2_+ﬁ4_360‘ ﬁ_?_ 360
i ) ii EE» " Lol : e o] i
l“;
49 ©> v 5 1<t
— 0 =g = 13g» Oy = —05= 135, —dy = ¥4 = 1op- (245

The values of the coefficients i, of the general six-point molecuie are finally deter-
mined by the condition that the summation of the right-hand side of the discrete
equations gives the same weights as the Gregory quadrature formula with degree of
precision five [ 1, p. 19], namely,

1 |"i7

1
“J V d,‘\':E}'l‘F}’z‘*‘}@%‘ +}‘;,;,;+; Va

ki,
24 720 1440

Lo 1 19 27
VLV ——V4)
+< V%Y 7% il )

[y

\,___,/

1
+1 N .
= 1420 (475y, + 1902y, + 1104y, + 1586y,
+ 1413354 1440y, + --- +4751 v} (2.15)
After some calculations one finds the values
31=ﬁ6=%, 52:[)’5:%’ ,33:134:%- {2.15a;

It is not difficult to verify that the linear six-point formula based on the coefficient
values given in (2.15) and (2.15a) constitutes a sixth-order accurate approximation
of the equation y' = f(y, x).

The derivation of the quadrature formula {2.16) assumes that the left and the
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right special molecules do not overlap and hencefore N > 10. To obtain the sixth-
order scheme valid also for 6 <N <9, the quadrature formula (2.16) must be
changed by introducing the following modified weights

. o= — 1875 — . — 1250,

N=6: Wy = W5 = 14105 Wi =Wy = 1220>

_ . yo— . — 1077 Vo 1732,
N=T: W3 =Ws= 355, Wa= 14205

1550 (2.17)

_ oy = 1559,
N=38 Wy=Ws=135;

_ 0. _ 1386
N=9: Ws = 1740-

2.4. Wilkinson Refinement for Ill-Posed Problems

The proposed discretization method provides an algebraically exact representa-
tion of the boundary value problem expressed in a first-order form. As a conse-
quence, the solution of nonpathological equations is straightforward, as it has been
confirmed by several test calculations including strongly oscillatory and nonlinear
problems. However, when the differential equation is sziff, the resulting system of
algebraic equations becomes ill-conditioned. In these cases, the procedure of iterative
refinement introduced by Wilkinson can be used [32]. Such a procedure is very
convenient in the present context of sparse bordered multidiagonal matrices since
it requires to storing only two copies of the coefficient matrix and avoids the fill-in,
as would occur instead using Gaussian elimination with partial or complete
pivoting. Although the latter procedure is in principle preferable, the numerical
results for several test problems indicate that the iterative refinement is what the
linear multistep schemes basically need to deal with in most stiff and ill-conditioned
situations. It must be noted that the residual associated with the full row imposing
the integral conditions provides a numerical indicator whether or not the Wilkinson
procedure is required, as shown in the following.

It is very easy to detect the occurrence of ill-conditioning when solving the linear
system of equations

Ay=»5b (2.18)
in the present formulation. The conditions supplementing the first-order system are

imposed through the algebraic equation

N

Y &Y= (2.19)

j=1

where y is the m-vector of the condition values. After the numerical solution y of
Eq. (2.18) has been computed, one evaluates the vector

N
T=3 &V (2.20)
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using extended precision arithmetics in the accumulation of the scalar product. The
linear system of equations is ill-posed when the relative average error associated
with the satisfaction of the conditions is found to be greater than the machine
roundoff error. Therefore, the iterative refinement will be attempted whenever the
condition

G=1

"~ > machine roundoff

o

[
[N
o~

is found to be satisfied, where (7> =m ! >7_y Iy'™). The refinement procedure of
Wilkinson bears some resemblance with the difference correction method iatro-
duced by Fox in 1947 [33], and subsequently modified and extended by Pereyra
in the form of a irerated deferred correction method (a discussion of such methods
and related techmiques is given in [18,34]). Although Fox’s method “was
effectively in the spirit of the later idea for the iterative refinement of the solution
of linear equations” [18], deferred correction methods are rather different from
Wilkinson iterative refinement, considering that the former act to increase the order
of accuracy of the approximation whereas the latter operates on a discretization
with a fixed order of accuracy. It is also worth mentioning that Wilkinson proce-
dure is an auxiliary component of the proposed method, because most problems de
not require the refinement so that it is bypassed automaticaily, by virtue of the test
(2.21). The iterative refinement is instead necessary only under very special cir-
cumstances, such as, for instance, to assure the theoretical rate of convercence of
the schemes in the case of stiff equations (cf. examples (4.1.2f) and {4.2.1)}-{4.2.2}},
or to detect a situation in which the ill-conditioning is beyond the recovery
capability of Wilkinson procedure (cf. example {4.2.3}).

3. HiGHER ORDER EQUATIONS

This section discusses the form of the integral conditions for boundary value
problems of differential order higher than the second. The present exposition is
limited to the case of linear equations of the fourth and sixth order. The conditions
that will be formulated are valid also for nonlinear problems and the analvsis can
be easily extended to deal with equations of any order.

3.1. Fourth-Order Equation

The most general linear equation of the fourth order has the form

W SN+ W+ (O + k() = stx), (3.0
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where f, g, h, k, and s are known functions. The boundary conditions most
frequently associated with this equation are

Y(a)=a, Y(b)=p,

(3.2)
Yla)=a, Y'b)=F,
where the values o, 5, «', ' are prescribed. By introducing the variables ¢ =,
{=vy", and {=4¢", Eq. (3.1) can be rewritten as a system of first-order equations.
The conditions associated with the system are obtained as follows.

The derivative boundary conditions in (3.2) for i give two “Dirichlet” conditions
for ¢, namely, ¢(a)=0o" and ¢(b)=pf". On the other hand, since ¢ =14’ and the
values of Yy on the boundaries are prescribed, ¢ satisfies also the integral condition
{2 ¢ dx =B — a. Thus, there are three possible conditions for ¢, namely,

Ha)=«' or  $b)=f or jbqﬁdx:ﬂ—a.

The condition for the variable { =" comes from the application of the Green
identity for the second-order (total) derivative operator

[ owr = gyrde=tow - g0

By taking any function 5 satisfying the equation
7] " p— O

and using the boundary conditions (3.2), this identity with ¢ =y gives the following
integral condition for the variable {,

b
f {ndx=y[n],

a

where

y[n1=nb)p —nla)a’—n'(b)B +n'(a)a

Note that the boundary term y[#] is a known quantity since it involves only the
prescribed boundary values and the already determined function # (evaluated at
x=a and x =b). In particular, if 5 is chosen to be n(x)= 1, the integral condition
assumes the form of a normalization condition

jb‘:dxzﬁ'—a'.

a
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Such a condition could also have been obtained more directly from the equaticn
¢ = ¢' using the boundary specifications for ¢.

The condition for the third auxiliary variable &=y resulis from the Green
identity for the third-order derivative operator, nameiy,

b
[ wr+omyde= Loy =g+ 471

For any function g, the identity yields

jb 5adx=fb "o dx

124 a

b
= —| o dx+ [Y'o— Yo+ 1L

Since no boundary condition is prescribed for ¥”, the function ¢ is to be taken as
the solution of the problem

¢”=0, o¢(a)=0, and a(b)=0,

so that the Green identity becomes

b
| éodx= —ylc'].

“a

The function ¢ is defined up to an (inessential} arbitrary coefficient. If ¢ is chosen
to be

(b—x)(x—a)

G(x): {b_a}?_ ?

the integral condition for ¢ assumes the specific form

b P 1 _
f & dx=x+ﬂ—2,ﬁ x.ﬁ‘
a b—a (b-a)’“

If one introduces the function

S(x)= —f(x)¢ = g(x){ — h(x) g — k(x ) + stx),

for notational convenience, the formulation of problem (3.1)-(3.2} as first-order
system becomes
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, N N
£ = — _
5 —S(X), ja Sadx—' b—a 2(b_a)27
b
C’zia J\ Cdx=ﬁl_a,a
‘ ) (3.3)
=C pla)=o’ or ¢(b) =P or | $dx=p—a,
Y=, Yla)=a or y(b)=p.
The system of equations can be also written in the following compact form
Yy =A(x)y+r(x), (3.4)
where
¢ —flx) —glx) —h(x) —k(x) s(x)
{ 1 0 0 0 , 0
= X)= X)= 3.5
r=la b A=l g e b (35)
1/ 0 0 1 0 0

The previous procedure for obtaining the integral conditions supplementing the
system of first-order equations is applicable also to sets of boundary conditions
different from those considered in Egs. (3.2) such as, for instance, when the value
of the second derivative of the unknown i is prescribed at one extreme of the

interval.

3.2. Sixth-Order Equation

One can also extend the preceding analysis to the case of the sixth-order equation
5
=Y filx) P+ s(x) = S(x), (3.6)
k=0

supplemented with the boundary conditions

!I/In\-—rv Mi(h) — R

Via=2,  WB)=F, (37)
via@=a', Y=

One has to consider the Green identity for the higher order derivative operators
and to introduce the functions which belong to the kernel (null space) of these
operators and satisfy suitable homogeneous boundary conditions. The first-order
formulation of the problem defined by Eqs. (3.6)-(3.7) is easily found to be
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f!_a!/ ﬁ’+18/ 5—%
"= S{x rdx = —1 + 24 ,
o' =8{x) J pvdx=2 b—a) by *(b—af
b 1/!+ﬁ!l '!,))'—CHI
'=p, o -2 - =,
= =P [ 7 —a (b —a)*
b
v=6 [ av=pow
ob
u=q, pa)=a" or p(b)=f"or | pdv=p§—do
. y‘b I
d=k  Bla)=o or gib)=F or | gdx=F—x
=4 Yla)=o or yi(b)=B,
where the functions v(x) and o(x) are defined by
vix)= x=ay (b—x) @)’ (b—x)’ and o{x) _xmalb-x)
T (b-a)t T (b—a)

It is important to note that integral conditions different from those explicitly given
can be formulated for the variables &, {, and u. The choice among the various alter-
native conditions of boundary value or integral value type is made completely free
by the fact that the first unknown p is subject to a{n integral) condition involving
all of the boundary data prescribed on .

4. NUMERICAL EXAMPLES

All the problems which follow have been solved on an IBM 43-81 computer
using double precision arithmetic throughout and exrended precision for the
Wilkinson refinement procedure. The fourth-order linear multipoint scheme
described in Section 2.2 has been used in most of the calculations, except where
otherwise specified.

4.1. Linear Problems with Constant Coefficients

4.1.1. System of Two Split Equations

The first example is the simplest two-point boundary value problem, namely,

u"” = s{x), ula)=«a, u{by= 4, (4.1.1)
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where s(x) is a known function. The problem is formulated as a system of two
first-order equations to give
b

v =s(x), J vdx=p—a,
a (4.1.2)
u'=u, u(a)=uo or u(b)=p.

These equations are said to be split in the sense that they can be solved in sequence,
one after each other. They are solved in the case s(x)=4e>, u(x)=e"*, over the
interval [0, 1], using the second-order scheme described in Section 2.1. The
L%error E, of the numerical solutions for different values of # is reported in
Table 1.1 together with the order of convergence log,(E-,/E,). Either of the two
boundary conditions for u can be imposed in the solution of the second equation.
The satisfaction of the integral condition in the solution of the first equation assures
the two solutions u, and u, obtained by imposing the left or the right boundary
condition are coincident, apart from the roundoff errors shown in Table I.1.

In the simple case of split equations solved by means of the second-order
accurate scheme, the discrete equations for u read

h
=t =35 (v, 1+v)) (4.1.3)

and could be interpreted as a scheme marching in a forward or backward direction,
depending on the boundary condition which is actually imposed. This interpreta-
tion is, however, of no substance since the explicit character of the equations results
accidentally from applying a two-point approximation to an uncoupled system. By
contrast, the lack of dependence of the solution on the boundary condition actually
imposed on the unknown u is a general property of the proposed linear multipoint
schemes and holds also in the case of coupled equation systems.

4.1.2. Systems of Two Coupled Equations

Consider now the Helmholtz-like problem in one dimension,
'+ wlu=s(x), ula)=a,  ub)=4, (4.1.4)

TABLE L1

Boundary Value Problem Leading to a System of Two Split Equations,
Second-Order Accurate Scheme

N L? error Convergence order d=ug—u,

11 0.181(—2) 2x1078g<sg3Ix 10718
21 0.475(—3) 1.93 Ix10"¥<dgS5x1071
41 0.122(—3) 1.96 0<o<8x1071

81 0.308(—4) 1.99 4x1075<dg2x10718
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TABLE I.2a

Comparison of Solutions Obtained by Imposing the Left or Right Boundary Condition,
Second-Order Accurate Scheme

Exact Numerical Exact Numerical
x solution solution Ug—U; X solution solution Ug—U;
0.00 1.0000 1.0000 —1071® 0.50 2.7182 2.7132 10-1
0.05 1.1051 1.1044 0 0.55 3.0041 2.9990 1074
0.10 1.2214 1.2199 0 0.60 3.3201 3.3150 0
0.15 1.3498 1.3476 0 0.65 3.6692 3.6644 0
0.20 14918 1.4890 0 0.70 4.0551 4.0506 0
0.25 1.6487 1.6453 0 0.75 44816 44776 101
0.30 1.8221 1.8182 10°1 0.80 49530 4.9495 0
0.35 2.0137 2.0094 0 085 54739 5.4711 10-1
0.40 2.2255 2.2208- 0 0.90 6.0496 6.0476 0
045 2.4596 2.4546 1013 095 6.6858 6.6848 0
0.50 2.7182 2.7132 10°5 1.00 7.3890 7.3890 0
TABLE 1.2b
Linear Problem with Constant Coefficients (Oscillatory Case),
Second-Order Accurate Scheme
N L? error Maximum absolute error Convergence order
101 0.327(—-1) 0472(—1)
201 0.809(—2) 0.117(—1) 2.02
401 0.202(—2) 0.291(—2) 2.00
801 0.504(—3) 0.728(—3) 2.00
1601 0.126(—3) 0.182(—3) 2.00
TABLE 1.2¢
Linear Problem with Constant Coefficients {Oscillatory Case),
Fourth-Order Accurate Scheme
N L? error Maximum absolute error Convergence order
200 0.151(+1) 0.22(+1)
400 0.563(—1) 0.85(—1) 475
800 0.337(—2) 0.51(—2) 4.06
1600 0.209( —3) 0.32(—3) 4.01
3200 0.130(—4) 0.20(—4) 4.00
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TABLE 1.2c bis

First-Order System of Two Weakly Coupled Equations:
Dependence of the Error on the Parity of the Number of Mesh Points

N L error Convergence order N L* error Convergence order
160 0.610(—1) 101 0.1+ 1)

200 0.299(—2) 4.35 20t 0.6061 — 1} 4.18

400 0.i181(—3) 405 401 0.358{ -2 4.08

800 0.113(—4} 4.00 801 0.217( -3} 4.04
1600 0.713(-6) 3.99 1601 0.133(—4) 4.03

ter of the conditions. For instance, in the aforementioned example with w” = 16,
exactly the same errors of Table I.2¢c are obtained using one point more or less than
in the reported calculations. On the contrary, when the coupling is weak, the value
of the error for N even may become smaller than for (a comparable} ¥ odd. For
example, the numerical resuits for problem (4.1.7) in the weakiy coupled case
w* =107 using even and odd grids are compared in Table L.2c bis. The errors for N
odd are larger than the errors for N even by more than an order of magnitude. it
must be noted, however, that the theoretical convergence rate is achieved on the
two distinct sets of even and odd grids.

In the case of fully uncoupled equations, the singularity makes it impossitie to
use the fourth-order accurate multipoint scheme with an odd number of grid poinis.
The spurious mode associated with the singularity of the matrix ic found to be 2
2h-wave (h=1;{N — 1)), narely,

(0 for jodd,
u,-:{l for j=2+4k
—1

for j=4k,

where k=1,2,3, ...

The same oscillatory example (4.1.7) has also been solved by means of the sixth-
order accurate scheme described in Section 2.3, obtaining results always exhibiting
the expected order of convergence. Such a scheme has been employed on a grid of
1600 points to compute the solutions for several values of w*. The corresponding
results are reported in Table 1.2d. For w?=10* the maximum absolute error is
0.33x 10~° to be compared with the value 0.32 x 107> of the fourth-order accuraie
scheme.

Exponential case. Another linear example with constant coefficients considsred
in [16] is the problem

o

U —@u=s,cos(yx). #(0)=1 and u{lj= (4.1.8

331/86/2-6
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TABLE L.2d

Linear Problem with Constant Coefficients (Oscillatory Case),
Sixth-Order Accurate Scheme

w” L? error Maximum absolute error

10° 0.22(—11) 0.62(—11)

103 0.39(-9) 0.56(—9)

10* 0.21(—6) 0.33(—6)

10° 0.18(—-3) 0.38(—3)
TABLE 1.2e

Linear Problem with Constant Coefficients (Exponential Case)

N L? error Maximum absolute error Convergence order
200 0.22H=2) 0.557(—2)

400 0.123(-3) 0.291(—3) 4.17
800 0.744(—5) 0.170(—4) 4.05
1600 0.461(—6) 0.130(—5) 4.01

TABLE L2f
Linear Problem with Homogeneous Boundary Conditions
N L? error Maximum absolute error Convergence order
Withour Wilkinson refinement
100 0.17(—4) 0.38(—4) —
200 0.68(—6) 0.18(—5) —
400 0.18(—5) 0.11(—4) —
800 0.23(—6) 0.15(-5) —
1600 0.52(—6) 0.33(—5) —
With Wilkinson refinement (two iterations)

100 0.17(—4) 0.38(—4)

200 0.67(—6) 0.18(—5) 4.67
400 0.31(—7) 0.89(—17) 4.45
800 0.17(—8) 0.47(—8) 4.18
1600 0.10(—9) 0.27(—9) 405
3200 0.64(—11) 0.15(—10) 401
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The analytical solution is

DX 6o SO \ ‘4
wx)=C, e+ Cre™ " -5 cos{yx}. 14.1.82)
D*+7°

The solution is still oscillatory but now it contains rapidly growing and decaying
components as & becomes large. Problem (4.1.8) with @?=10% y=80. and
so = 10% has been solved by means of the fourth-order scheme and the numerical
errors are reported in Table 1.2e. The convergence rate is again achieved quite
regularly. Compared with orthonormalization [ 167, for the same value of N, the
linear multipoint method is less accurate but one has to remember that the number
of mesh points actually used in the Runge-Kutta integration is a multiple of the
avmber of declared grid points.

Homogenseous boundary conditions. In all the previous examples, the linear
multipoint schemes provide accurate and convergent results without any need to
resort to the Wilkinson refinement procedure. The next problems iliustrate instead
the importance of the iterative refinement in order to guarantee the convergence for
general equations and boundary conditions. Stoer and Bulirsch have considered the
following nonhomogeneous equation supplemented with homogeneous boundary
data [357, see also [36 or 19],

u" — &% =@* cos}{nx) + 2n cos(2mx),
0

and wl(11=0,
with solution

u(x)=(1+e )" [ Vg e ] —cos?{nx). {4.1.92}

Problem (4.1.9) with @ =20 has been solved by means of the fourth-order accuraze
scheme. The errors of the numerical solutions obtained without and with Wilkinson
refinement are compared in Table [.2f which shows the impressive gain in accuracy
assured by only two iterations. In comparison with the resulits provided by variocus
initial value methods reported in [197], the proposed method requires less points for
obtaining solutions of low accuracy and a comparable number of points for getting
very accurate solutions.

4.2.1. Homogeneous Equation with a Gaussian Solution

The first example with variable coefficients is the two-point boundary value
problem

v —(x2=1)u=0, w(0)=1 and wuibj=e "2 (4211
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differential equation is
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u(x)=Ae=~"? 4 Be=*7 J

X

0

e*"? dy.

(4.2.1a)

With the conditions prescribed in (4.2.1), the solution is u(x)=e~*** for any

value of b. However, when b is not small, e.g., 5> 6, it becomes difficult to solve

TABLE II.1

Homogeneous Linear Equation with Variable Coefficients

N L? error Maximum absolute error Convergence order

100 0.21(—4) 0.26(—4)

200 0.96(—6) 0.12(~5) 4.5

400 0.52(-17) 0.60(—7) 4.2

800 0.31(-8) 0.34(—38) 4.1

1600 0.19(—9) (—9) 40

TABLE I1.2
Holt Equation (m =0, a=1)
Fourth-order linear
multipoint method
Osborne Chasing method

x h=1/100 h=1/100 h=1/40 h=1/80

0 0.1000( +01) 0.9999876(+00) 0.9999999( +00) 0.100000000( +01)
1 0.2593(+00) 0.2693404( +00) 0.2593425( +00) 0.259342547(+00)
2 0.3455(—01) 0.3456397(—01) 0.3456405(—01) 0.345640463(—01)
3 0.1987(—02) 0.1988532(—02) 0.1988528(—02) 0.198852332(—02)
4 0.4590(—04) 0.4595871(—04) 0.4596120( —04) 0.459582911(—04)
5 0.4188(—06) 0.4125652(—06) 0.4137580(—06) 0.412596333(—06)
6 0.1409(—08) 0.1413020( —08) 0.1231637(—08) 0.140732769( —08)
7 0.1821(—11) 0.1827268(—11) —0.1011097(—08) —0.304898194( —10)
8 0.8825(—15) 0.8863389(—15) —0.1448407(—08) —0.462611063( —10)
9 0.1597(—18) 0.1605597(—18) —0.1637120(—08) —0.525582396( — 10)
10 0.1058(—22) 0.1082885(—22) —0.1352774(—08) —0.444881792(—10)
11 0.2713141(—27) 0.1121146( —08) 0.331291618(—10)
12 0.2521085(—32) 0.6748801( — 16) 0.158927845(—16)
13 0.8677126( — 38)
14 0.1105113(—43)
15 0.5203999( —50)
16 0.9055032(—57)
17 0.5818867(—64)
18 0.4179442( —72)
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the problem by means of superposition methods. This is not the case for the linear
multipoint schemes combined with the Wilkinson refinement procedure. For
mnstance, the fourth-order scheme applied to the problem with =10 yields solu-
tions with the numerical errors indicated in Table 11.1. The effect of two Wilkinson
iterations 15 dramatic: the error is decreased by several orders of magnitude with
respect to the simple scheme without iterative refinement and the convergence rate
is 1* instead of linear.

4.2.2. Holt Equation

A boundary value problem very similar to the previous one is the Hoit equation
£23, p. 55}
' —(2m+ 1+ x%ju=0, u(0) =g, u{oc)=0. {4.2.23
The case m=10, 2 =1 has been solved by means of the fourth-order scheme. The
right boundary condition is imposed at the large but finite distance x, =12 and
two meshes with = 1/40 and /= 1/80 are considered. The numerical resulis are
compared in Tables 1.2 with those calculated by Osborne and by means of the
so-called chasing method [237] on the mesh #=1;100.
earlier computations and is uniform over the integration interval. On the contrary,
in the exponentially vanishing tail, the relative local error (ratio of the local value
of the numerical error to the value of the exact solution) is smailer using the initial
value schemes. Two Wilkinson iterations are performed in the considered exampie.

4.2.3. A Problem with a Turning Point

Tte last variable coefficient example is the problem [16]

eu” + xu' = —en’ cos{mx) — nx sin{nx),
(4233
u(—1)= -2, u(l)y=20.
The solution of the problem is
. , erf(x//2¢ o
u(x) = cos{mx) + #_/_T), {(4.23a}
erf{1/,/2¢)

which shows a rurning point or sharp transition layer near x=0 when ¢ — 0. Finite
element and finite difference methods are expected to fail for this probiem and
cannot compete with algorithms designed for solving singular perturbation
problems. For instance, the computer code COLSYS [5]. based on z spline
collocation method with A%-accuracy, solves the problem for e= 10~ within an
absolute error of 10 % using a nonuniform grid of 256 subintervals. By contrast, the
fourth-order muitipoint scheme combined with the Wilkinson iterative method
provides the results reported in Table I1.3 for the case ¢= 10" The maximum
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TABLE 113

Variable Coefficient Problem with a Turning Point

N L? error Maximum absolute error Iterations
600 0.212(—1) 0.282(—1) 2
800 0.117(—1) 0.158(—1) 2
1000 0.392(-2) 0.528(—2) 3
1200 0.152(—-2) 0.272(—-2) 6

absolute error for N=1200 is 0.27x 1072 and can be compared with the value
0.27x 10 provided by the orthonormalization method using 2000 projection
points and an adaptive sixth-order accurate Runge-Kutta integrator. Six Wilkinson
iterations are performed in the case N =1200. For finer grids, the equation system
becomes so ill-conditioned that the iterative refinement procedure fails to converge.
Of course, better numerical results are allowed when the linear multipoint scheme
is employed using a stretched interval via a transformation such as X=(x+1)*
[16]. However, the attention is limited here to a straightforward application of the
new schemes without problem-dependent modifications. Anyway, it should be not
difficult to devise the adaptive transformations most convenient for dealing with
problems displaying a singular behaviour (see the example 4.5).

4.3. Nonlinear Problems

The potential of the linear multistep methods in the nonlinear case is assessed by
applying the standard Newton method to the solution of a number of nonlinear
boundary value problems. The Jacobian is always evaluated analytically. It is
worthwhile mentioning that in the proposed formulation the Newton method can
handle any kind of nonlinear conditions F(y(a), y(b)) =1y, straightforwardly; in this
case the Jacobian of F enters the top row (g, £,, .., gy} of the matrix of the
linearized problem. In any case, the matrix associated with the linearized system of
equations has the same bordered multidiagonal profile encountered for linear
problems. All the results shown in the present section have been obtained without
any need to resort to the Wilkinson refinement procedure.

4.3.1. A Singular Perrurbation Problem

A nonlinear example of singular perturbation type is the following boundary
value problem [37, p. 436]

en" =1—(u')?, 0<x<l, u(0) = a, u(l)=4, (4.3.1)
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the boundary data of which are assumed to satisfy the coadition o — 3 < {. The
derivative u' of the exact solution is given in terms of ¢, », and 8 by

k= Der -tttk
T lk—1)e* et~k

1'(x)

{£3.1a"

where & =e'” ~** V¢ The numerical results for this variable, which becomes discon-
tiruous at x=(a—f+1)/2 as e -»07" [37, p. 436], are reported in Table IIL] for
the case ¢ =0.05, x=1, and = 1. Using the initial guess u{x} =2+ (f—x}x in the
nonlinear procedure, the relative error becomes less than 10~ '° in 9 iterations.

4.3.2. An Equation with End Singularity

The capability of the proposed approach in handling equations with singular
coefficients is investigated against the following nonlinear problem [22, p. 367,

u' +u'/x + be" =0, ' (0)=0, ity =0. 14370

Loy

The equation in (4.3.2) becomes singular at the left extreme x =0 of the integration
interval. In order to apply the fourth-order multipoint scheme to this problem, the
discrete equations associated with molecules involving the singular point x =@,
namely, the left three-point molecule and the first four-point molecule, must be
derived by approximating the (nonsingular) equation

2u” + de* =0, x—0. (4.2

b

provided by the application of the I'Hospital rule to the origiral differential
equation. The solution to the nonlinear problem (4.3.2} can be expressed in closed
analytical form [22, p. 36]

The value of the integration constant C satisfies the equation BC/{C +4d)" =
It can be readly shown that for ¢ in the range 0 <¢J <2 there are two distinct
sclutions. The two roots ', expressed in terms of the parameter J are

—_—

C,=4-06+2./202-9)

TABLE [iLl

Nonlinear Problem of Singular Perturbation Type

N L? error Maximum absolute error terations
200 0.223(—5) 0.103(—4) S
406 0.133(—6) 0.612(—6) S
800 0.823(—38) 0.377(-7) 9
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For 6 =2, C =2 and only one solution exists, whereas for J > 2 there is no solution.
Starting from the initial guess #(x)=0 and taking 6=1, the Newton method
converges to the solution characterized by the root C_. Four iterations are enough
to obtain a relative error <10~ '? in the nonlinear iteration. The errors of the
numerical solutions with respect to the exact solution are given in Table II1.2. They
demonstrate the correctness of the proposed formulation of boundary value
problems also in the presence of a singularity in the equation, without the need of
matching the numerical solution to an analytic expansion in the neighborhood of
the singularity. Again, the most convenient method for problems of this kind is the
COLSYS code. which 2 problem almost identical to (432} with an error of

A very well-known equation of the boundary layer theory is the Blasius equation
(see, e.g., [38, p. 135]),

YU+ =0,  Y(0)=0, Y(0)=0, Y'(o)=1. (4.3.3)

There are several ways of approaching the numerical solution of this boundary
value problem. A first possibility is to introduce the variable velocity u=y’ and to
write a system of mixed-order coupled equations for the variables u and .
A numerical scheme based on this representation of the problem is described in
[38, p. 187]. Another possibility is to introduce the variable vorricity { =" and to
express the Blasius problem again as a mixed-order system for the variables { and
. A disadvantage of both mixed-order formulations is that the centering of the
discretization for the different equations is not immediate, especially when higher
order approximations are to be developed. This drawback is not present when the
Blasius equation is instead formulated as a system of three first-order equations by
introducing simultaneously the variables velocity ¥ =’ and vorticity { =u’ =", to
give

u' =, u(0)=0 or u(ec)=1,
Y =u, ¥(0)=0
TABLE II1.2

Nonlinear Problem with End Singularity

N L? error Maximum absolute error Iterations

50 0.55(—-7) 0.15(—6) 4
100 041(-8) 0.12(-7) 4
200 0.30(—9) 0.80(—9) 4
400 0.28( —10) 0.60( — 10) 4
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The fourth-order accurate scheme is used to solve such a system over the finite
interval [0, x ] where x_ =5, 6, 7, starting from the initial guess

1 ; ) x?
{x)=—, ulx)=—, Plx)=5-
X, x, dx,

Using up to 800 grid points, it is possible to determine the value of the wall
vorticity ¢{0) with a precision of eight decimal figures {(see Table 1I1.2). The solution
on the grid with 200 points and taking x_, =6 is identical with the Howarth
solution reproduced in [38, p. 139].

4.3.4. Flow rear o Rotating Disc

Cousider now the equations governing the steady flow of a wviscous incom-
pressible fluid which is set into motion by the rotation of a disc of infinite radial
extent [38. p. 1027]. They may be expressed as

F”:F’H+F2_G2w

G"=G' H+ 2FG,

{4.3.4)
H' =HH+P,
H = =2F

Here, the prime denotes the derivative with respect to the variabie ¢ which
expresses the dimensionless distance from the surface of the disc. The boundary
conditions supplementing the system of equations are

F0)=0,  Floc)=0,
GOO)=1, Glx)=0
H(0)=0.

2

The last equation implies the equation H"” + 2F' =0, which can be combined with
the third equation to give P'= —2F'— HH'. Thus, the function P({} can bhe
expressed in terms of F({) and H({) by means of the relationship

TABLE IIL3

Blasius Equation: Wall Vorticity

<(9)

N Xe=5 x, =6 N, =1
100 0.46964510 0.46960041 0.46959983
2 0.46964514 0.46960049 046959598
300 0.46964514 0.46960049 0.46959999

400 0.46559995
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P=P,—2F— H?/2, where P, is an arbitrary constant. It follows that the third
equation can be eliminated from the system, obtaining a set of three coupled
equations for the three unknowns F, G, and H, supplemented with the five specified
boundary conditions. The problem is then reformulated as a system of five first-
order differential equations by introducing the variables £=F' and K=G". After
deriving the integral conditions for E and K from the boundary conditions
originally prescribed, one obtains the set of equations and conditions

E—EH+F>— G2, J Edi=0,

0

F'=E, F(0)=0 or F(cc)=0,
K’ = KH + 2FG, j“kdg: 1,

0
G =K, G(0)=1 or G(o0) =0,
H' = —2F, H(0)=0.

ﬁ"ﬂhmhﬁnre the introduction of the inteoral conditions allows nhrovidine each variahle
R w—

WILID 1S OWI1 CONAILIOIL. INOW, UCIIIHIE LIC VeCLODS

E EH+F*—G?
F E
y=| K and f(y)= KH+2FG |,
G K
H —2F

the nonlinear problem is rewritten in the canonical form dy/d{ = f(y) and can be
solved numerically by means of any one of the schemes previously described. For
instance, the fourth-order accurate multipoint scheme is employed taking {_ =20
and using the four grids with N =50, 100, 200, 400. The computed results are

TABLE II14

Flow near a Rotating Disc

N Err(G) Err(H) E(0)=F'(0) K(0)=G'(0)
50 0.25(—1) 0.67(—1) 0.510585 —0.6152113
100 0.97(—3) 0.45(—2) 0.5102457 —0.61587339
200 0.37(—4) 0.15(~3) 05102336 —0.61591817
400 0.16(—5) 039(—5) 0.5102327 —0.61592174

[39] 0.510233 —0.6159220
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compared in Table 1I1.4 with the very accurate vaiues provided by the foliowing
representation [32] of the exact solution for the variables H and G,

H(iy= —o+ ) A,e™™,  G{)=

n=1 n

B,e ™",

1

s

The precise value of « is not known and its approximation depends on the number
of terms which are retained in the summation. In the comparisons, the first 4G terms
have been included, using for the coefficients 4, and B, the values given in [39]
which provides o= —H(o)=0.884474. Table 1114 indicates that the accuracy ¢f
the (fourth-order) solution over a mesh of 400 points is comparabile with that one
of the serigs expansion truncated after the first 40 terms.

4.4. Higher Order Equations

4.4.1. Fourth-Order Nonlinear Equation
The appropriateness of the integral conditions for higher order differential
equations is first verified against the following nonlinear fourth-order equatior

Y+ Y sin(ye? Sy + 1] =s(x. (4.4 11

The nonlinear first-order system equivalent to Egq. (4.4.1) is integrated over the
mterval [0, 1] assuming a solution of the form y(x)=¢" and using Newton
method. Starting from the initial guess § = 1, {our iterations are required 1o obtain
a convergence error < 10 '? with N = 50, 100, 200 points. The errors of the numeri-
cal solutions with respect to the exact solution are shown in Tabie IV.l. The
theoretical order of convergence of the multipoint scheme is therefore achieved also
in this higher order and highly nonlinear example.

4.4.2. Sixth-Order Linear Equation

This section on higher order nonhomogeneous problems is terminated by
considering the following sixth-order, variable coefficient, equation,

) 1
iy xyyt —— " Fsin xidl”
4 4 T+x v v
+e"‘l//"+COSX$'+E‘"\L/1=5{X)- {‘:J'-[“ZE

TABLE IV.1

Fourth-Order Nonlinear Equation

N Maximum absolute error L% error
50 0.529(—8) 0.337(—8:
100 0.321(—-9) 0.208( —9)

200 0.199( — 10} 0.125( - 10}
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Equation (4.4.2) is supplemented by the set of boundary conditions typical of a
sixth-order problem as described in Section 3.2. The source term s(x) is defined by
choosing the solution to be 1/(x)=e*". The numerical results given in Table IV.2
indicate that the order of convergence of the linear multipoint scheme is not
affected by the differential order of the problem provided the proper integral
conditioning is taken into account.

4.5. Orr-Sommerfeld Equation

In view of the good numerical performances demonstrated by the fourth-order
accurate scheme, it is employed also as a basic linear solver for the calculation of
eigenvalues and eigenfunctions. This section describes the application of the
methodology based on the use of integral conditions to a classical problem of
hydrodynamic stability, namely, the determination of the most unstable mode in
plane flow when the Reynolds number R is large.

The mathematical statement of this problem is the well-known Orr-Sommerfeld
equation,

(D* —a?)’ g —iaR[V(x) ~ (D> — o) + iaRV"(x)y =0, (4.5.1)
supplemented with the no-slip boundary conditions
Y(£1)=0, y'(+1)=0. (45.2)

Here, the symbol D and the prime denote both the differentiation with respect to
x, the coordinate normal to the plane walls, o is the wavenumber in the
streamwise direction y, and c is the complex eigenvalue appearing in the expansion
of the perturbation Y(x, y, 1) =(x) e™> <", For Poiseuille plane flow, the unper-
turbed velocity ¥(x) assumes the parabolic profile V(x)=1 - x* If the ecigenvalue
problem (4.5.1)—(4.5.2) is solved as a fourth-order problem, the boundary condi-
tions (4.5.2) can be imposed without difficulties. Such an approach has been
followed, for instance, using a finite element method with Hermite local basis [40]
and using a spectral approximation with Chebyshev polynomials [41, 42]. Another
method of solution is to transform the fourth-order equation into a system of two
second-order equations by introducing the vorticity variable { = v, —u, in conjunc-

TABLE 1V.2

Sixth-Order Linear Equation

N Maximum absolute error L? error Convergence order
200 0.59(-5) 0.23(—5)
400 0.37(-6) 0.17(—6) 4.00

800 0.23(—7) 0.11(-T7) 4.01
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tion with the stream function . The conditions supplementing such an equaticn
system can be found following the analysis given in {287]. The present work being
devoted to a first-order formulation, the Orr—Sommerfeld problem will be refor-
mulated by introducing the additional variables ¢ =" and ¢ =" The complete set
of conditions for the variables (&, £, ¢, ) is determined by a reasoning similar to
that followed in Section 3.1 where the integral conditions appropriate to & fourth-
order boundary value problem have been obtained. There is, however,
a slight difference due to the fact that the variables with missing boundary
conditions are defined here in terms of ¢ through the reiationships

C=(—D*+o )y and E=D{—-D +ax" ).

so that the Green identities for the operators (— D%+ %) and D(—D*+ 2%} are
necessary to determine the integral conditions for [ and £, respectively. The full set
of first-order equations with the corresponding condlt;ons is found to be

A1l
= Wix, ) + xRV (X)), J E[cosh(zxx)—cosh a] dx =0,
1

o1
(=2 | coshiox) dx =9,

T (4.5.3)
$'= —{+o’y, d(—1)=0 or ¢(+1)=0.
Y=g, Y(—1y=0o0r yl+1)=

where Wix. 2)=0o"+ iaR[V(x)— c]. By introducing the quantitics

g 0 Wix.a) 0 RV{x}
< 1 0 0] 0
r=1 Alx)= . , 4.54
1 ¢ » (\) 0 _1 0 2 { S"}
W 0 0 1 0

the differential system can be written in the notation of Section | as )’ = A{x} v
The discretization over a grid with N points provides the generalized eigenvalue
problem {A—c¢B)y=0, where y is a 4N-vector, whereas A and B are 4N x 4N
matrices. A single eigenvalue and the associated eigenfunction can be evaluated
using the standard shifted-inverse-power iterative method. For high values of the
Reynolds number, the solution provided by the backward and forward subsiitu-
tions can be, however, so inaccurate that the iterative method may fail to converge.
In order to guarantee the converge also in these difficult situations, it is possible t
resort to the Wilkinson refinement procedure {see section 2.4). For computatieﬁa‘i
efficiency, the solution of the linear system will be refined only when the error due
to the ill-posedness of the system is greater than the relative error in the inverse
power iteration.
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TABLE V.1

Eigenvalue of the Orr-Sommerfeld Problem for Plane
Poiseuille Flow at R=10* and a2 =1

N ¢
100 0.23752 89394 + i0.00373 95295
200 0.23752 66440 + i0.00373 96594
400 0.23752 64984 + i0.00373 96698
800 0.23752 64894 + i0.00373 96705
[41,42] 0.23752 649  +i0.00373 967

Note. Coordinate transformation parameter a = 1.4.
Initial eigenvalue for the shifted-inverse-power method
¢=10.24 +i0.0038.

The eigenvalue associated with the most unstable mode for Poiseuille plane flow
has been calculated using a uniform grid over the entire interval [—1,1] for
moderately large values of R. For R=10* and R=10° and a wavenumber a =1,
the agreement of the present results with the values published in the literature
[41,42,15] is fully satisfactory. The eigenfunction of the considered mode being
symmetric, the eigenproblem can be solved on the half interval [0, 1], using the
conditions appropriate to the even subproblem, namely,

¢(0)=0,
a1l

J ¢ cosh(ax)dx =0,
[\]

#(0)=0 or  4(1)=0,
Y(1)=0.

Numerically identical results have been obtained on the two intervals. At larger
values of the Reynolds number a great reduction of the number of grid points to

TABLE V.2

Eigenvalue ¢ and Transformation Parameter « in the
Orr—Sommerfeld Problem for Plane Poiseuille Flow, =1

log,o R ¢ a
4 0.23752 64894 + i0.00373 96705 1.4
5 0.14592 47902 — ;0.01504 20430 20
6 0.06659 25239 — i0.01398 32675 25
7 0.03064 12978 — i0.00726 04873 3.0
8 0.01471 134 —i0.00351 239 35
9 0.00656 63030 — i0.00166 00213 4.0
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be used for a fixed accuracy is afforded by introducing the stretching of the variable
x suggested in {437 as

tanh{aX)

X=X =,

tanh{a)
sy npre 1c an adingtahle na mgele ol _exX3amunie ing the i i — i 4 {o-
== I . UL value O OIIVCIECS L0 C VCLY deCUTALeC ootlidlale Bive N Z

the manner shown in Table V.1. The fourth-order accurate scheme with 400 points
has the same accuracy of a spectral calculation with 25 Chebyshev modes.

When R is higher, the value of the stretching parameter a must be increased. The
values of ¢ and a for R in the range 10*< R<10° are given in Table V.2. The
accuracy of the eigenvalues calculated on a mesh of 800 points is greater than in
the orthonormalization method on finer grids.

The convergence of the eigenfunctions for the cases R=10° and R= 10" to the
reference solutions provided by Davey [15] is shown in Tables V.3 and V.4, by
comparing the values of the real and imaginary parts of ¢ at some selected points.

TABLE V.3

Selected Values of the Eigenfunction of the Ori—Sommerfeld Problem for
Plane Poiseuille Flow with R=10% and x=1

Linear multipoint method

[14]
N =400 N=2800 N=T00

x W, ¥, ¥, ¥, Y, b,

v 1 0 1 0 i 0
0.i0 0.594272 0.000161 0.994274 0.00016¢ 0.994275 0.000161
5.20 0.976933 0.000646 0.976934 0.060646 3976935 0.000646
0.30 0.947462 0.001467 0.947466 0.001467 0.947467 0.001467
0.40 0.904569 0.002640 0.904972 0.002640 0.904973 0.00264C
0.50 0.848079 0.004196 0.848081 0.004196 0.848082 3.004196
0.60 0.774779 0.006182 0.774782 0.006182 0.774783 5.006182
0.70 0.682077 0.008679 0.682079 0.008679 0.682080 0.008679
0.80 0.565123 0.011865 0.565125 0.011864 0.565123 0.011864
0.50 0.414020 0.016380 0.414021 0.016380 0.4:14021 0.016380
0.91 0.396177 0.017003 0.396177 0.017002 0.396177 0.017062
0.92 0.377634 0.017708 0.377636 0.017708 0.377635 C.017708
0.93 0.358172 0.018515 0.358173 0.018513 0.358173 0.018513
0.94 (.338029 0.018894 0.238028 0.0188%54 0.338027 0.6188%4
0.95 0.319253 0.021545 0.319256 0.021544 0.319256 0621543
0.96 0.292479 0.034693 0.292486 0.034693 0.292490 0.0346%4
0.97 0.235163 0.043859 0.235170 0.043868 0.235171 0.043870
0.98 0.15235¢ 0.022454 0.152351 0.022454 0.15235% 0.022455

2.9% 0.055842 —0.006412 0.059840 —0.006417 0.055840 —0.006417
H 0 0 e G 0 Y
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TABLE V4

Selected Values of the Eigenfunction of the Orr-Sommerfeld Problem for
Plane Poiseuille Flow with R=10% and a =1

Linear multipoint method

[14]
N =400 N =800 N = 24000

x v, ¥, ¥, ¥, v, v,

0 1 0 t 0 1 0
0.900 0.479059 0.001682 0.479061 0.001682 0.479061 0.001682
0.910 0.463504 0.001738 0.463504 0.001738 0.463504 0.001738
0.920 0.447431 0.001798 0.447432 0.001798 0.447432 0.001798
0.930 0.430794 0.001862 0.430794 0.001862 0.430795 0.001862
0.940 0413527 0.001933 0.413528 0.001933 0.413527 0.001933
0.950 0.395547 0.002012 0,395547 0.002012 0.395547 0.002012
0.960 0.376731 0.002102 0.376731 0.002102 0.376731 0.002102
0.970 0.356894 0.002212 0.356894 0.002212 0.356894 0.002212
0.980 0.335708 0.002360 0.335708 0.002360 0.335708 0.002360
0.990 0.312405 0.002616 0.312405 0.002616 0.312404 0.002616
0.991 0.309384 0.002658 0.309884 0.002658 0.309883 0.002658
0.992 0.307325 0.002710 0.307326 0.002710 0.307325 0.002710
0.993 0.304603 0.002861 0.304604 0.002863 0.304604 0.002864
0.994 0.301615 0.002168 0.301609 0.002170 0.301606 0.002171
0.995 0.302998 0.001796 0.302995 0.001773 0.302993 0.001767
0.996 0.302919 0.018106 0.302941 0.018100 0.302941 0.018100
0.997 0.261235 0.043246 0.261251 0.043261 0.261255 0.043265
0.998 0.171739 0.029029 0.171740 0.029030 0.171740 0.029031
0.999 0.066752 —0.005564 0.066749 —0.005571 0.066749 —0.005572

1 0 0 0 0 0 0

The values of the present solutions at these points have been obtained by means of
a linear interpolation.

The great accuracy of the results provided by the proposed scheme using the
integral conditions jointly with the variable stretching is not surprising when one
considers that an integrally conditioned vorticity equation was at the heart of the
asymptotic stability analysis for plane Couette flow undertaken by Davey [44].

5. CONCLUSION

In this paper linear multipoint methods with an even order of accuracy for the
solution of boundary value problems for ordinary differential equations have been
presented. The key point which has made it possible to establish the new class of
numerical schemes is the recognition that the systems of first-order equations stem-
ming from two-point boundary value problems constitute a category of ordinary
differential problems quite distinct from that one associated with initial value
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problems. As a consequence, conditions of an integral (nonlocal) type, instead of
the usual boundary value (local) type, have been found to supplement the system
of first-order equations, so that the idea of marching in time or using a step-by-sten
integration procedure has been dismissed. The introduction of the concept of non-
local conditions led to outline a simple and unitary numerical framework for the
selution of practically any kind of boundary value problems. With respect to initial
value methods, the new formulation presents the advantage that the number of
independent or dependent variables is not increased and that no orthogonalization
procedure is required.

The linear multipoint schemes have then been applied to solve a wide specirum
of linear and nonlinear test problems. Satisfactory results have been cbtained
without encountering the numerical difficulties faced by sireple superposition
methods provided that the Wilkinson refinement procedure is empioyed in the case
of stiff equations. The fourth-order accurate muitipoini method has also been ussed
in conjunction with the shifted-inverse-power iteration method to compute ecigen-
values and eigenfunctions of an Orr—Sommerfeld problem when the Reynoids
number is large. Although the method has proven to be successful in refining the
eigenvalue associated with the most unstable mode for plane Poiseuille flow. the
significance of the proposed formulation for the sclution of the general eigenvaice
problem remains to be investigated.

It can be concluded by emphasizing once more the extreme simplicity, sfficiency.
and reliability of the proposed method, all properties resulting from the fact thar it
is based on an aigebraically exact representation of the original boundarv value
problem.
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