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This paper presents an original formulation of two-point boundary value and eigenvalue 
problems expressed as a system of first-order equations. The fundamental difference between 
the new method and other methods based on a first-order approach is the introduction of 
conditions of an integral character to supplement the simultaneous set of first-order equations, 
which are hence never regarded as an initial value problem. The consideration of integral 
conditions leads to establish a class of linear multipoint schemes for the numerical solution of 
boundary value problems for ordinary differential equations. Furthermore, the global charac- 
ter of the integral conditions (nonlocality) combined with the block structure of the system 
of algebraic equations allow dealing with stiff problems by means of the classical procedure 
of iterative refinement introduced by Wilkinson. The properties of the numerical schemes are 
illustrated by the solution of linear and nonlinear problems and by the accurate and efficient 
determination of some eigensolutions of a difficult problem of hydrodynamic stability. The 
proposed method is conceptually simpler and numerically more convenient than existing 
initial value methods, while still retaining all the advantages of a formulation based on a 
first-order system. ‘f 1990 Academic Press, Inc. 

Numerical methods for solving ordinary differential equations supplemented with 
conditions at both extremes of the integration interval can be divided into two 
classes: methods which solve the seeond- or higher order equation directly as an 
elliptic problem in one dimension [ 1, Chap. 4; 2, Chap. 7; 3, Sect. 8.7.21, and initial 
value methods which transform the high-order differential equation into a system of 
first-order equations [ 1, Chap. 8; 3, Sect. 8.7.1; 4, p. 3591. Methods belonging to 
the first class can be applied to solve variable-coefficient and nonlinear problems 
(see, e.g., [2, p. 3551) and have been implemented using spline collocation to 
provide very efficient schemes for dealing with singular perturbation problems [S]. 
Nevertheless, a greater attention has been paid to methods relying on a first-order 
system, mainly because the corresponding schemes can be used to solve boundary 
value problems of any order and with an arbitrary order of accuracy. Among the 
various techniques proposed so far, four methods are the most frequently employed. 
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In the inru~iant hnbedding method [6, 71 the original ordinary differentlai 
problem is reinterpreted as a suitable cross section of a more general, partial 
differential, problem. The superposition or shooting method [S-IO] is based on he 
evaluation of an influence matrix relating the values prescribed on the boundaries 
wi:h the quantities to be determined at the initial point of the integration interval: 
the slabilized variant of this method for nonlinear problems, named multiple or 
parallel shooting, requires to solve n-fold versions of the first-order system, where 
11 is the number of shooting points. The con?pouncl-!llot~i.~ method [ll-I;] relies 
instead on the integration of first-order systems of equations for certain minors of 
the solution matrices, the number of minors depending on the differential order of 
the original equation. Finally. in the very resent conri,~ous ~i.thojzornlaii~a;ir?ll 
method [14-161 the linear independence of the solution components and the 
numerical stability during the integration process are assured by a nonlinearization 
procedure which in genera1 increases the total number of first-order equations to be 
solved. 

A feature common to all these methods is the use of numerical algorithms and 
computer software developed for the time integration of initial value problems. T_:e 
solution of the differential equation with data prescribed at both interval extremes 
is then accomplished by integrating the various aforementioned first-order systens 
In both directions and by determining the lacking initial values so as to match the 
available final conditions (the most popular computer codes for boundary value 
problems are discussed in [ 171). These methods have been greatly perfected in the 
last years and they can now be regarded as highly sophisticated numerical prcce- 
dures capable of harnessing unstable initial value problems, including strongly 
oscillatory and extremely stiff problems. However, there are still situations where 
the inital value methods encounter numerical difficulties. For example, the 
orthonormalization method combined with an adaptive nge-Kutta integration 
procedure experiences convergence difficulties when in asing the nunber o; 
projection points beyond a certain limi t, in the relatively simple hnear problem 
considered as the first test case in [16]. Most difficulties of this type are 
the fact that “even for very well-conditioned boundary value problems the corre- 
sponding initial-value problems can be very ill-conditioned,” to use the words of 
Fox [IS]. This issue has been much debated in the literature [ IS21 ], leading to 
the discovery of interesting relationships between the various methods of this kind. 
see also the recent monographs [22-24j. 

The aim of the present work is to describe a new numerical method for t.he 
solution of boundary value problems expressed in the form of a first-order sysferc, 
making no reference to concepts pertaining to the class of initial value problems. .ks 
it turns out, the decision of not to decompose the problem into a collection of 
initial value subproblems is indeed very convenient m order to formula;e the 
discrete approximations most appropriate for ordinary differential problems rhe 
originary nature of which is eliiptic. Interestingly enough, such an investigation has 
been originated from some recent studies on the numerical solution of the vorticir~~- 
stream function equations for incompressible viscous flows [ 25-B]. It has isee 
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shown that, when the fourth-order biharmonic equation for the stream function is 
replaced by two Poisson equations for the variables vorticity and stream function, 
the pair of no-slip conditions originally attached to the stream function translate 
into conditions of an integral character for the vorticity. Generally speaking, the 
integral conditions have the crucial property of preserving the functional equiv- 
alence of the lower order equation system with the original higher order differential 
problem. It is therefore logical to expect that conditions of a similar nature would 
arise when a high-order ordinary differential problem is formulated as a system of 
first-order equations. For example, in the typical case of separated-end conditions 
supplementing a second-order equation, the reduction of the differential order 
produces a very simple integral condition which expresses the normalization of the 
auxiliary variable in terms of the boundary values prescribed for the original 
unknown. 

More generally, the occurrence of conditions not of the usual boundary value 
type is found to play a decisive role in the present context of ordinary differential 
equations. In fact, the integral conditions: (i) allow the establishment of a class of 
linear multipoint schemes which represent the extension to boundary value 
problems of the linear multistep schemes developed for initial value problems: 
(ii) can dispense with the use of pivoting, and (iii) make the iterative refinement of 
Wilkinson for ill-conditioned systems the only tool needed to deal with stiff and 
ill-posed problems. In practice, the proposed formulation is such that the solution 
of two-point boundary value problems expressed in first-order form becomes an 
ordinary matter of numerical linear and nonlinear algebra. At the same time, the 
profile of the block matrices is bordered multidiagonal and this structure can be 
easily preserved by properly choosing the direction in the elimination process. 
Therefore, the computational efficiency of the new algorithms is at least equivalent 
to that of the classical initial value techniques of the same order of accuracy. 

All the essential features characterizing the new formulation are presented in this 
paper, the content of which is organized as follows. In section 1 the ordinary 
differential problem is formulated and the nonlocal character of the conditions 
supplementing the set of two simultaneous equations associated with a second- 
order boundary value problem is discussed for both separated and nonseparated 
conditions. Section 2 describes linear multipoint schemes with increasing order of 
accuracy for the solution of systems of first-order equations supplemented with con- 
ditions of an integral character. The fourth-order accurate scheme is described in 
some detail since it is believed to be a valuable alternative to the standard Runge- 
Kutta integration in the solution of boundary value problems. The section 
terminates by illustrating how the classical procedure of iterative refinement 
introduced by Wilkinson can be used in conjunction with the proposed schemes to 
solve stiff and ill-posed problems. Section 3 shows the form of the integral 
conditions for problems with differential order higher than two, mainly for the case 
of the fourth-order equation, i.e., the equation for an elastic beam according to the 
linearized Euler-Bernoulli theory. In Section 4 the proposed algorithms are 
employed in the solution of some examples, comprising linear and nonlinear 
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problems of increasing differential order and the Orr-Sommerfeld eigenvaiue 
problem for plane Poiseuille flow. The last section is devoted to the concluding 
remarks. 

I. FIRST-ORDER SYSTEMS WITH T~O-~POINT CONDITIONS 

Consider the linear system of first-order coupled equations 

y’ = A(x) J’ + r(x), ii.!. D 

where y and v are m-vectors while A is an m x rn matrix. The differential system 
( I. 1) is to be solved over the finite and fixed interval [a, b] subject to the so-calied 
two-point boundary condition 

Ly(a) + Ryjb) = ;‘, 3s 7 ? 1.l. i 

where L and R are tlr x m matrices and 1’ is a known m-vector. 

When the rank of both L and R is equal to ~1, a case to be considered rather rare 
in the applications, condition (1.2) is called norzseparatrd. In this case, Eq. ( 1.2) 
prescribes a (linear) relationship between the values of the solution vector y at the 
end points s = a and x = b of the integration interval-the most nonlocal condition 
for a (vector-valued) function defined on the interval. With this ~nderst~~di~g, 
denoting condition (1.2) as a “two-point boundary condition” appears confusing 
since Eq. (1.2) is not a boundq~ condition at all. To avoid such a misinterpretation. 
condition (1.2 j will be here referred to simply as a two-point cmdition. The present 
formulation deals with the case of full-rank matrices % and R by taking Eq. (l,Zj 
merely as it stands, namely as an algebraic equation relating the unknown vectors 
~,(a) and v(b) (see below j. 

Most frequently, however, the ranks of L and R are deficient. This occurs when 
the values of some components of the vector unknown are prescribed at the end 
points s = a and x = b. In the literature these types of conditions are referred to as 
sepiiamted boundary conditions. 

In the simplest case m = 2, i.e., f’= ( J,(“, JJ”)~ two basically different kinds of 
separated conditions are encountered. The first form occurs when the values of 
L&WZ! components are specified at the ends of the interval, eg.. 

js(‘)(aj = a, y”‘(b) = 8. (1.3 b 

Conditions (1.3) obviously represent a nonlocal conditioning for the vector 
unknown J’ since boundary data are available at both end-stations and for >,!i’ 
and 13’~‘~ This type of conditions will be dealt with as a particular case of the 
nonseparated condition (1.2). 
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The second form of separated conditions arises when no data are available for 
one component, say J,(I), whereas the values of only the other component ~9~~) are 
prescribed at both ends of the interval, namely, 

y’(a) = a, y”‘(b) = p. (1.4) 

This type of separated-end conditions is structurally different from the previous one 
and plays a crucial role in the present formulation. It is encountered whenever the 
second-order boundary value problem 

Y” = F( Y’, Y, x), Y(a)=cr. and Y(b)=/?, (1.5) 

for the scalar unknown Y is reformulated as a system of two first-order equations 
by introducing the auxiliary variable Z= Y’. Then, from the definition of the new 
unknown Z and the two boundary conditions imposed on the original unknown Y, 
it is straightforward to obtain 

s b 

s 

b 

Z d.y = Y’dsx= YIt= Y(b)- Y(a)=/?-cc. 
a u 

(1.6) 

Therefore, the second-order problem (1.5) is equivalent to the following system of 
two first-order equations 

.b 

2’ = F(Z, Y, x), 
J 

Z dx = fi - a, 
n 

(1.7) 
Y’ = z, Y(a)=% or Y(b)=b. 

Each variable of system (1.7) is supplemented with its own condition: the first 
equation is supplemented with an integral condition, here simply a normalization 
condition in terms of the boundary data prescribed for the original unknown Y, 
whereas the second equation can be solved subject to either boundary condition for 
Y. For example, if the left boundary condition Y(a) = s( is imposed, the defining 
equation Z= Y’ and the integral condition for Z give 

Y(b)= Y(a)+ [” Zdx=a+fi-cr=fi, 
‘U 

(1.8) 

so that the right boundary condition for Y is also satisfied. The elliptic character of 
the second-order problem ( 1.5) implies an integral and hencefore nonlocal character 
in the conditions for the system of first-order equations (1.7). By summarizing, the 
unusual property of nonlocality is found to be attached to all types of conditions 
for the system (l.l), irrespective of their separated or nonseparated character. 
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The integral condition (1.6) can be also interpreted in the light of the general 
theory of the compatibility conditions formulated by Lanczos [30]. Let t5e 
problem defining the single unknown Y, 

Y’ = z, Y(a) = x, Y( h; = p. { “1,g; 

be considered as an independent problem to be solved after the function Z has been 
already determined. The data for such a problem, i.e., the source term Z(,x) and the 

oundary values x and fl, cannot be specified in an independent manner because 
only one integration constant is allowed in the solution of a frrst-order differenria! 
equation. Since there are two boundary conditions, problem (1.9) can admit a 
solution only on condition that the data Z(x), LX and /? sa?isfy a corrl,natibil.?~.i~ 
relationship, usually known as the Fredhoim criterion or alternative. Following 
Lanczos’ analysis, an ovederermined problem associated with a given differential 
operator is subject to compatibility conditions which require that the right-hand 
side of the equation be orthogonal (for homogeneous boundary data) to the linear 
manifold spanned by the solutions of the homogeneous adjoint problem [SC, 
Chap. 41. The argument is a direct consequence .of the Green identity for the 
differential operator of the considered equation and its adjoint The applicazisn 
of this general principle to the problem (1.9) is immediate and relies on i5e 
well-known formula of integration by parts, that is, 

where X(s) and Y(x) are arbitrary differentiable functions. The differential operator 
associated with problem (1.9) is the first derivative supplemente 
conditions at botir the extremes of the interval [a, h]. virtue of the integra:ion- 

arts formula, the adjoint operator is the first der tive with a negative sign 
~itko~? any boundary condition. It follows that in the specific case examined 

here the linear manifold to be used in the orthogonality relalonshrp contains only 
:he constant functions. Therefore, there is only one linearly independent condition 
stemming from the orthogonality principle and it assumes the following form 

The nonhomogeneous character of condition ( I. 11) is a consequence of the ,fa:h’t 
ihat the boundary conditions of the overdetermined problem (1.9) are no:>- 
homogeneous. Such a compatibility condition is coincident with the %tegral 
condition (1.6) derived previously. 

It can be noted that the reduction of the second-order equat;on into the form of 
a first-order system is not unique. In fact, the set of equations lvill depend on the 



320 QUARTAPELLE AND REBAY 

form of the relationship used to define the auxiliary or intermediate variable Z and 
to each specific definition it will correspond a different form of the integral condi- 
tion associated with that variable. Anyway, whenever separated conditions of type 
(1.4) are prescribed, an integral condition will be established to supplement the 
system of first-order equations which, in the general case of a nonlinear problem, 
will be written in the form 

4” = f( J’, x). (1.12) 

It is important to recognize that the very presence of a condition not of the usual 
boundary value (local) type prevents the interpretation of the first-order system 
(1.12) as an initial value problem and therefore discourages the use of marching-in- 
time or step-by-step integration procedures. On the contrary, the structure of the 
discrete approximations introduced in this paper depends essentially on the fact 
that the integration associated with the considered problem is definite and that the 
conditions supplementing the first-order system have a nonlocal character. By 
construction, these approximations will be appropriate also in the presence of 
full-rank two-point conditions (1.2) as well as conditions of multipoint type. 

2. LINEAR MULTIPOINT SCHEMES 

It has been shown that the differential system (l.l), or its nonlinear equivalent 
(1.12), is supplemented always with conditions of a nonlocal character. They can be 
the nonseparated two-point conditions (1.2), the separated conditions (1.3), or the 
integral condition (1.6). The complete problem is now descretized by means of the 
finite difference method over a uniform mesh of size h = (b - a)/(N- 1 j, namely 

xj=a+(j- 1)/z, j= 1, 2, . . . . N. (2.1) 

Due to the irztegraf-value character of the problem in the proposed formulation, the 
first-order system will be discretized using only central differences. 

2.1. Second-Order Scheme 

A second-order accurate scheme is obtained by approximating the differential 
system (1.1) at the mid-way point x~+ rj2 and using a two-point computational 
molecule over the entire interval, to give 

4’-=f [A(xj)I;+A(-~j+,)li+,] 
h 

+Aj Cr(xj)+r(xjtl)], l<j<N-1. (2.2) 
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This scheme is weil known and is called trapezoidai ruie, see, e.g., [9, p. ZS]. In the 
present work, the system of algebraic equations in the HZ x N unknowns 

(Yi, j’2, ..., I.~) is made complete by including the two-point condition ( I.Z), which 
in discretized form becomes 

Ly, + RJ’.y = y. !2.3) 

In the case of separated-end conditions as in (1.4), one component of the verior 
equation (2.3) is replaced by a discretized version of the integral condition ( i.0). To 
guarantee the second-order accuracy of the approximation, the following quad- 
rarure formula is employed for the considered component? say J’ I’? 

After multiplication by lz, Eq. (2.2) gives 

where A,= .4(x;) and rj = r(.rj). According to (2.3)-(2.5 j. the equations of the 
second-order scheme constitute a linear system of PIIN algebraic equations: the 
matrix of which has a block structure, with nonzero iy! x n? blocks on the main 
diagonal, on the lower codiagonal and on a single (full) row. If the equation corre- 
sponding to the two-point or integral condition is placed at the top of the system 
of equations, one obtains the block bordered bidiagorzai matrix shown in Fig. 1. ail 
the coefficients displayed being actually nz x tn matrices. 

When an integral condition (2.4) is present, g,ZO for ail i. In the case of non- 
separated conditions (2.3 j, g, = L and g, = R, whereas g, = g3 = . . = g,?.- I = G. 

FIG. 1. Profile of a bordered bidiagoxal matrix. 
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All the coefficients gi, 1 <j< N, are however still retained in the profile of the 
matrix during its (block) factorization in order to take into account automatically 
the nonlocal effect brought about by the condition (2.3). It can be noted in passing 
that retaining this full row in the matrix profile accomplishes quite naturally and in 
a general form what is achieved through an artifact by the multiple shooting 
method in the particular case of separated-end conditions, see [9, p. 51. The profile 
of the matrix of the linear system in the present formulation is thus always the 
same, independently of the separated or nonseparated character of the conditions. 
The scheme appears to be fully implicit due to the presence of one full row. 
However, this feature does not compromise the computational efficiency of the 
method. In fact, the linear system associated with the bordered bidiagonal matrix 
can be solved by a Gaussian elimination which preserves the profile simply by 
starting at the bottom and proceeding to the top row (UL factorization). 

The key property of Eqs. (2.2) making the trapezoidal scheme combined with the 
integral condition a linear multipoint scheme for boundary value problems lies in 
the fact that, by summing the discrete equations (2.2) all together, the left-hand side 
yields the difference ~7,~ - ~2~) whereas the right-hand side provides an approxima- 
tion to the definite integral coincident with the quadrature formula (2.4). The 
relevance of such a property in the discretization of boundary value problems 
expressed as a simultaneous set of first-order equations has not been realized so far, 
although higher order multipoint schemes are obtained simply by searching for 
algebraically consistent approximations to the first derivative and the definite 
integral. 

2.2. Fourth-Order Schetne 

When deriving higher order accurate approximations to non-initial value 
problems it is natural to consider a centred discretization of the equations and 

+=====--====--i 

. 

I-=--=-===;--1 
. 

FIG. 2. Computational molecules of the fourth-order scheme for boundary value problems. 
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therefore to make use of formulas of symmetric type. This restriction combmed with 
the need of obtaining the correct number of discrete equations indicates that the 
approximation of the equation ~2’ = f( y, X) must be evaluated midway between the 
grid points. It follows that the (general) computational moiecule of a scheme ior 
first-order systems associated with boundary value problems contains an even 
number of grid points. The advantages of discretizing first-order equations midway 
between the grid points have been already pointed out by Fox [I, p. 141.1. In the 
case under examination, this location of the approximation becomes mandalory 
due to the definite character of the integration in order to obtain the correct 
number of equations. 

The computational molecule for the first scheme with an order of accuracy higher 
than the second will contain four points, except near to the boundary, where a 
three-point molecule, as illustrated in Fig. 2, is to be used. For instance, at the ieft 
end of the interval, the linear three-point,’ fourth-order accurate formula 

-~~,+~~3=h(~fi+~f~+~.j3j 
(2.6j 

will be used, where f ,  = f( yj, .yj). At any internal location, the equation ~3’ = I!‘( .v, X) 
will be approximated by the linear four-point generai relationship 

for 1 d j < N - 3. The coefficients %k and /In-, k=G 1, 2, 3, are given in [31, p. 43-J 
as a function of two parameters rr and tr: 

cq= -ib jLJ=&(l +a+9b) 

%I= +;(a+b) &=$-5-%+ISrbj 

%7= -i(l +a) f12=&(19- I%-51:; 
12.8) 

xx= +; /?,=39+s+b!. 

Here, the normalization C/i bh-= (1 --a+ b),,Q has been a opted. For arbitrary 
values of a and b, approximation (2.7) is fourth-order accurate, whereas for the 
particular value a = -$ and b = 1 it becomes sixth-order accurate. However, the 
overall accuracy of the scheme will be necessarily limited by the lower accuracy of 
the three-point approximation to be used near the boundaries. Therefore, the values 
of a and b will be chosen so as to reproduce the effect of the definite integration 
exactly, namely, yiv - y,. To this end, the summation of the left-hand sides of all 
the discrete equations must give a complete cancellatioil of the coefftcients of the 
unknowns (J,:, J*?, . . . . ~9,~) except for the first and the last ones, J, and ~9:;. From 

’ In the present context of boundary value problems, the linear approximatiofi formulas are denoted 
by the number of points used, instead of the number of steps as usual in th- p iiterature on initial value 
probkms. 
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Eqs. (2.6))(2.8) one obtains a = 0 and h = 1. Then, the linear four-point formula 
(2.7) becomes 

Furthermore, the summation of the right-hand sides of all the discrete equations 
(i.e., Eq. (2.6) plus Eqs. (2.9) for 1< j < N- 3 and the equation similar to Eq. (2.6) 
valid for the right end of the interval) will provide an approximation to the definite 
integral with a consistent order of accuracy. In fact, the summation is found to give 
the expression 

+ ... +24f,~,+23f~_,+28f,--,+9f,). (2.10) 

The coefficients in (2.10) are coincident with the weights of the Gregory quadrature 
formula with end corrections of degree of precision three reported by Fox [ 1, p. 191, 

1 b 
s 

1 

ho 
?.dx=;y,+J’2+yit ... +y*rLl+p 

+ 
( 

f A-id” y,+ 
1 ( 

-++p2 
) 

y, 

+ ... + 24~‘,-, + 23~1,-, + 28~,~- l + 9yN), (2.11) 

where A and V are the forward and backward difference operators. Therefore, in the 
fourth-order accurate scheme this formula will be consistently used to approximate 

b integral conditions of the type sa J p(l) d.x= p- cc, whenever they are present. The 
patterns of all the coefficients CQ and /Ik of the resulting scheme are shown in Fig. 3. 
The first row of the matrix is left void since the first equation of the (block) linear 
system is associated with the two-point or integral conditions. 

Expression (2.11) has been derived by assuming that the two special three-point 
computational molecules do not overlap, namely, N> 6. Actually, the values of the 
coefficients in the left-hand side of Eqs. (2.6) and (2.9) are such that the aforemen- 
tioned cancellation holds irrespective of the overlapping of the special molecules, 
namely, it holds also when N = 4 or N = 5. In these particular cases, a fourth-order 
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FIG. 3. Fourth-order scheme: Pattern of the coetkier& mA and jTi: 

approximation is still possible provided that the quadrature formula (2.1 X ‘) is 
replaced by the following modified integration rules 

It is important to remark that, once the discretized equations have been established, 
their form is valid irrespective of the type of separated or nonseparated conditions. 
In the particular case of separated-end conditions with the value of a single compo- 
nent prescribed at both the extremes, if the proper discrete equations are used, it 
is equivalent to impose the two boundary conditions or: alternatively, the integral 
condition together with either of the two boundary conditions. The choice involving 
the explicit use of the integral condition is, however, the optimal one since it 
avoids by construction the need of pivoting during the factorization process, each 
component of the unknown J’= (y”‘, -v(‘), . . . . J.(“‘)) being provided with its own 
condition. 

The numerical scheme based on Eqs. (2.6), (2.9) and on the condition (2.: I ) or 
possibly (2.3) is a nonnzarchilzg method for solving first-order systems J” =,,T’[J~~ X) 
stemming from boundary value problems for ordinary differential equations The 
scheme has a fourth-order accuracy un~~ormi~ over the entire integration interval. 
Surprisingly enough, the special computational molecules employed near the 
boundaries are essential to define a higher order approximation for boundary v;aiue 
problems instead of being a factor of complication as in the case of initial value 
problems. It is noted that the general computational molecule within the interval is 
based on four points, very similarly to the most common, fourth-order accurate, 
Runge-Kutta integration method. However, the proposed method is basically dif- 
ferent from any Runge - Kutta scheme. In fact, the linear multi oint approximation 



326 QUARTAPELLE AND REBAY 

is, on the one hand, centred and fully implicit, in compliance with the nonlocal 
character of the conditions supplementing the first-order system, and, on the other 
hand, coupled, due to the block structure of the system of discrete equations. In 
the case of a linear problem, the matrix profile of the linear system of algebraic 
equations is bordered quadridiagonal and is shown in Fig. 4. 

The equation corresponding to the integral or two-point conditions is placed at 
the top of the linear system. With such an ordering, the fill-in of the matrix is 
avoided by starting the elimination at the bottom and proceeding to the top row 
of the matrix (UL factorization). Thus, in the proposed method there is no need for 
sophisticated procedures of Gaussian elimination, such as those described in [24]. 

2.3. Sixth-Order Scheme 

The linear multipoint scheme with a sixth-order accuracy can be derived using a 
similar reasoning. In this case, the general computational molecule contains six 
points and there are two special molecules at each extreme of the interval, one with 
live points and another with four points. The coefficients elk and flli of the smallest 
molecule are fixed by the condition of a sixth-order accuracy and are given by 

gl g2 g3 

b, ~2 4 

01 62 ~3 

a2 63 

g4 

d4 

c4 

85 . . gN--2 gN-I gN 

d5 

aN-4 b-3 cN-2 dN-I 

‘J/v--3 b-2 cN-l dN 

a N-2 b,- I CN 

FIG. 4. Profile of a bordered quadridiagonal matrix. 



LINEAR MULTIPOINT METHOD 1”i.Y _a- I 

expressions (2.8) with a = -E and b = 1. After the renormalization &. fi, = I, one 
obtains 

II -cc,=or,=,, ?7 -x2=x;= $. 

+B1=84=$ir +p:=fi3=&. 
(2.13) 

The values of the coefficients ‘xk for the two larger moiecules are determined using 
the parametric representation of the five-point formula given in [3lj and by 
imposing the condition of cancellation introduced previously. The values of the 
coefficients CL~ and px- for the five-point molecule are easily found to be, using the 
normalization xk jk = 1, 

whereas the coefficients elk for the six-point molecule are 

The values of the coefficients Pk of the general six-point molecuie are finally 
mined by the condition that the summation of the right-hand side of the discrete 
equations gives the same weights as the Gregory quadrature formula with degree of 
precision five [I, p. 191, namely, 

After some calculations one finds the values 

P,=P6=$& 82 = pj = +f&, 83 = p- = gg. (2.15a: 

It is not difficult to verify that the linear six-point formula based on the coefficient 
values given in (2.15) and (2.15a) constitutes a sixth-order accurate approximation 
of the equation J*’ =f( J?, x). 

The derivation of the quadrature formula (2.16) assumes that the lefi an’d the 
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right special molecules do not overlap and hencefore Na 10. To obtain the sixth- 
order scheme valid also for 6 d N d 9, the quadrature formula (2.16) must be 
changed by introducing the following modified weights 

N=6: 1875 
11'2 = 1Z'j = 1440, 

1250. 
11'3 = 11'4 = 1430, 

N= 7: 1077 
1V) = 12’5 = 1410, 

1732 
11’4 = 1440; 

N=X: 1559. 
(2.17) 

11’4 = M'j = 1540, 

N=9: 1386 
1vj = 1440. 

2.4. Wilkinson Refinement for Ill-Posed Problems 

The proposed discretization method provides an algebraically exact representa- 
tion of the boundary value problem expressed in a first-order form. As a conse- 
quence, the solution of nonpathological equations is straightforward, as it has been 
confirmed by several test calculations including strongly oscillatory and nonlinear 
problems. However, when the differential equation is stiff, the resulting system of 
algebraic equations becomes ill-conditioned. In these cases, the procedure of iterative 
refinement introduced by Wilkinson can be used [32]. Such a procedure is very 
convenient in the present context of sparse bordered multidiagonal matrices since 
it requires to storing only two copies of the coefficient matrix and avoids the fill-in, 
as would occur instead using Gaussian elimination with partial or complete 
pivoting. Although the latter procedure is in principle preferable, the numerical 
results for several test problems indicate that the iterative refinement is what the 
linear multistep schemes basically need to deal with in most stiff and ill-conditioned 
situations. It must be noted that the residual associated with the full row imposing 
the integral conditions provides a numerical indicator whether or not the Wilkinson 
procedure is required, as shown in the following. 

It is very easy to detect the occurrence of ill-conditioning when solving the linear 
system of equations 

Ay-b (2.18) 

in the present formulation. The conditions supplementing the first-order system are 
imposed through the algebraic equation 

(2.19) 
j= I 

where 1’ is the m-vector of the condition values. After the numerical solution j of 
Eq. (2.18) has been computed, one evaluates the vector 

4' 

7= C gjjji, (2.20) 
j=l 
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usi.ng extended precision arithmetics in the accumulation of the scalar product. The 
linear system of equations is ill-posed when the relative average error associated 
with the satisfaction of the conditions is found to be greater than the mack%-te 
roundoff error. Therefore, the iterative refinement will be attempted whenever the 
condition 

(7-Y) 
~ > machine roundoff 

(7) 

is found to be satisfied, where ( ;I) E r?z ~ ’ CT=, /I Ir)j. The refinement procedure of 
Wilkinson bears some resemblance with the d$fererzce correction method intrc- 
duced by Fox in 1947 [33], and subsequently modified and extended by Pereyra 
in the form oi a iterated deferred correction method. (a discussion of such methods 
and related techniques is given in [ 18, 341). Although Fox’s method “was 
effectively in the spirit of the later idea for the iterative refinement of the solution 
of hnear equations” [18], deferred correction methods are rather different from 
Wilkinson iterative refinement, considering that the former act to increase the ‘order 
of accuracy of the approximation whereas the latter operates on a discretization 
with a fixed order of accuracy. It is also worth mentioning that Wilkinson proce- 
dure is an auxiliary component of the proposed method, because most problems dc 
not require the refinement so that it is bypassed automatically, by virtue of th.e test 
(2.21 D. The iterative refinement is instead necessary only under very specia! cir- 
cumstances, such as, for instance, to assure the theoretical rate of convercence of 
the schemes in the case of stiff equations (cf. examples (4.1.2f) and (4.2.1 h (4.2.2 ) J. 
or to detect a situation in which the ill-conditioning is beyond the reco-\rery 
capability of Wilkmson procedure (cf. example (4.2.3 )). 

3. HIGHER ORDER EQUATIONS 

This section discusses the form of the integral conditions for boundary vaiue 
problems of differential order higher than the second. The present exposition is 
limited to the case of linear equations of the fozutlz and si.~?h order. The conditions 
that will be formulated are valid also for nonlinear problems and the analysis can 
be easily extended to deal with equations of any order. 

3.1. Fourth-Order Equation 

The mcst general linear equation of the fourth order has the form 
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where J g, 12, k, and s are known functions. The boundary conditions most 
frequently associated with this equation are 

@(a) = 4 $(b)=B, 
(3.2) 

I)‘( a) = a’, ti’(b) = P’, 

where the values c(, B, cx’, /I’ are prescribed. By introducing the variables 4 = $‘, 
[ = tj”, and s’ = $“‘, Eq. (3.1) can be rewritten as a system of first-order equations. 
The conditions associated with the system are obtained as follows. 

The derivative boundary conditions in (3.2) for $ give two “Dirichlet” conditions 
for 4, namely, &a) =CI’ and qS(b)=p’. On the other hand, since d= I+V and the 
values of $ on the boundaries are prescribed, 4 satisfies also the integral condition 
1: 4 dx = /I - CL Thus, there are three possible conditions for 0, namely, 

f#(a)=d or d(b) = p’ or 
I 

b qSdx=p-cr. 
fl 

The condition for the variable [ = $” comes from the application of the Green 
identity for the second-order (total) derivative operator 

! ‘b (&,h”-qY’t+hjdu~= [&,h-qYrl/] 1;. 
cl 

By taking any function y satisfying the equation 

and using the boundary conditions (3.2) this identity with 4 = 11 gives the following 
integral condition for the variable [, 

where 

?iCrll = vl(b)B’- dab- r’(b)P + ~‘(a)~. 

Note that the boundary term ~J[s] is a known quantity since it involves only the 
prescribed boundary values and the already determined function q (evaluated at 
x = a and x = b). In particular, if q is chosen to be v](x) = 1, the integral condition 
assumes the form of a normalization condition 

s b 

c dx = p’ - a’. 
a 
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Such a condition could also have been obtained more direatly from the equaticn 
; = 4’ using the boundary specifications for 4~ 

The condition for the third auxiliary variable 5 = $‘I’ results from the Green 
identity for the third-order derivative operator, namely, 

For any function CT, the identity yields 

Since no boundary condition is /prescribed for I)“, the function CJ is to be taken as 
the solution of the problem 

5”’ = 0, u(a) = 0, and a(b)=O, 

so that the Green identity becomes 

The function 0 is defined up to an (inessential) arbitrary coefficient. If G is chosen 
to be 

u(x) = (6 -x)(-r-a) 
(6-a)’ ’ 

the integral condition for 5 assumes the specific form 

s b x’ + p’ 
rad.x=-- ___ 2 l3-x 

a 6-a (6-a)” 

If one introduces the function 

S(x) = -$xjg - g(x)< - h(x)qfJ - k(.r)$ + s(x), 

for notational convenience, the formulation of problem (3.1 j-(3.2‘) as first-or&r 
system becomes 
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b 

15’ = S(x), s a’ + #8’ B-a 
<o&=------- ~ 

a b-a 2 (b-a)” 

s b 

[’ = 2, [ dx = fl’ - a’, 
u 

(3.3) 

4’ = i, cj(a)=a’ or cj(b)=D’ or J” bdx=B-cc, 
a 

ICI’ = d, $(a) = a or $(b) = p, 

The system of equations can be also written in the following compact form 

where 

1” = A(x) y + r(x), (3.4) i s -.f(x) -g(x) -h(x) -k(x) 4x) Y 4 I’= iI [ A(x) = 0 ’ :, 0 0 0 

1 0 0 1 ’ r(x) 
0 

= 0 . (3.5) 

* 0 0 1 0 

!I 
0 

The previous procedure for obtaining the integral conditions supplementing the 
system of first-order equations is applicable also to sets of boundary conditions 
different from those considered in Eqs. (3.2) such as, for instance, when the value 
of the second derivative of the unknown rl/ is prescribed at one extreme of the 
interval. 

3.2. Sixth-Order Equation 

One can also extend the preceding analysis to the case of the sixth-order equation 

(3.6) 
k=O 

supplemented with the boundary conditions 

$(a)=4 $(b)=P, 
$‘(a) = ix’, f(b) = B’, (3.7) 

$“(a) = cl’, $“(b) = /?I’. 

One has to consider the Green identity for the higher order derivative operators 
and to introduce the functions which belong to the kernel (null space) of these 
operators and satisfy suitable homogeneous boundary conditions. The first-order 
formulation of the problem defined by Eqs. (3.6)-(3.7) is easily found to be 
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*b /j” - ,” r’+fl’ 
~- 

u 
pvds=2 (b-a)’ 12 (b-a)‘+24 

8-z 

(b-Q)“’ 

cad.u=------- 
b-a 

p(a) = ,x” or p(b) = ,8” or lb p dx = j?’ - x’. 
‘6 

,-b 

qS(aj=x’or d(b)=/? or ( &1d.~=,b-x. 
‘Cl 

$(a) = a or G(b) = P, 

3.33 

where the functions V(X) and a( x ) are defined by 

It is important to note that integral conditions different from those explicitly given 
can be formulated for the variables <, [, and p. The choice among the various aher- 
native conditions of boundary value or integral value type is made completely free 
by the fact that the first unknown p is subject to a(~ integral) condition involving 
all of the boundary data prescribed on $. 

4. NUMERICAL ExAhwLEs 

All the problems which follow have been solved on an IBM 43-87; computer 
using double precision arithmetic throughout and extended precision for :he 
Wilkinson refinement procedure. The fourth-order linear multipoint scheme 
described in Section 2.2 has been used in most of the calculations. except where 
otherwise specified. 

4.1. Linear Problems with Conston t Coeificients 

4.1.1. System of Two Split Equations 

The first example is the simplest two-point boundary value problem, namely, 

li” = s(x ), u(a) = il, u(b) = p, (4.T.i) 
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where S(X) is a known function. The problem is formulated as a system of two 
first-order equations to give 

.b 
u’ = s(x), J 

v d.x = p - a, 
a (4.1.2) 

u’ = 0, u(a) = c( or u(b) = 8. 

These equations are said to be split in the sense that they can be solved in sequence, 
one after each other. They are solved in the case s(x)=4e”“, u(x) =eZX, over the 
interval [0, 11, using the second-order scheme described in Section 2.1. The 
L’-error E, of the numerical solutions for different values of 12 is reported in 
Table I.1 together with the order of convergence log,(E,,/E,). Either of the two 
boundary conditions for u can be imposed in the solution of the second equation. 
The satisfaction of the integral condition in the solution of the first equation assures 
the two solutions uL and uR obtained by imposing the left or the right boundary 
condition are coincident, apart from the roundoff errors shown in Table 1.1. 

In the simple case of split equations solved by means of the second-order 
accurate scheme, the discrete equations for u read 

h 
zlj-ujp,=~ (z~jpl+L~j) (4.1.3) 

and could be interpreted as a scheme marching in a forward or backward direction, 
depending on the boundary condition which is actually imposed. This interpreta- 
tion is, however, of no substance since the explicit character of the equations results 
accidentally from applying a two-point approximation to an uncoupled system. By 
contrast, the lack of dependence of the solution on the boundary condition actually 
imposed on the unknown u is a general property of the proposed linear multipoint 
schemes and holds also in the case of coupled equation systems. 

4.1.2. SIxterns of Two Coupled Equations 

Consider now the Helmholtz-like problem in one dimension, 

Zf” + CA4 = s(x), u(a) = cI, u(b) = P, 

TABLE I.1 

Boundary Value Problem Leading to a System of Two Split Equations, 
Second-Order Accurate Scheme 

(4.1.4) 

N L’ error Convergence order ii = UR - UL 

11 0.181( -2) 2x 10-‘5<6<3x 10-15 
21 0.475( -3) 1.93 lxlo~“~6~5x1o-‘5 
41 0.122(-3) 1.96 0<6<8x10-” 
81 0.308( -4) 1.99 4x 10-‘j<6<2x 10-16 
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where o is a parameter. Formulated as a first-order system. problem (4.3.3) 
becomes 

-where 

Equations (4.1.5) with 09 = 5, U(X) = e’“, and [a, b] = LO, I], have been solves! 
numerically by means of the second-order scheme, obtaining results with the errors 
and convergence properties similar to the previous split case. The numericai 
solution is independent on which boundary condition is imposed also in the 
present coupled case. The difference between the two solutions 14~ and ~1~ is given 
in Table I.&I and is found to be even smaller than in the split case. 

Q.wilhtorj~ case. A second exampie of coupled equations is provided by the 
problem [lb] 

2!” + O12U = so cos(l’x), u(O)= 1, z!(l)=c?. (4.1.7) 

The solution is oscillatory and is given by 

U(X) = Cl cos(ox) + C2 sin(c0,.Y) + SO ------y cos(;~x ), 
f.- 2 - ;I 

(4.:.7el 

where the constants C, and C2 are determined by the boundary conditions in 
(4.1.7). Table I.2b contains the errors of the numerical solutions provided by the 
second-order scheme for the mildly oscillatory case 0’ = IO’, 7 = 8, and so = JC’. 
The expected quadratic convergence rate is achieved in the actual computations. 

The strongly oscillatory case w’ = 104, 1’ = SO1 and .F~ = IO1 considered in [ 162 is 
then solved by means of the fourth-order accurate method and the results ar:: 
reported in Table 1.2~. With 800 mesh points the observed maximum absolute error 
is 0.005. This value can be compared with the error 0.012 for PI= 200 of the 
orchonormalization method which is based on an adaptive RungeeKultaPVerner 
method of fifth and sixth order (the DVERK routine of IMSL ). The lu” convergence 
rate is achieved here without difficulty. 

A particularity of the fourth-order scheme is that, when the equations are se-y 
weakly coupled, the errors for N odd can become greater than for N ez~n. This 
anomalous behaviour is explained as follows. The matrix of coefficients J& 
associated with the linear system (see Fig. 3), no matter whether supplemented by 
a boundary or an integral condition, is singular for N odd and nonsingular for N 
even. If the equations of the system are coupled together, the singularity is removed 
by the combined effect of the block structure of the matrix and the nonlocal charac- 



336 QUARTAPELLE AND REBAY 

TABLE L2a 

Comparison of Solutions Obtained by Imposing the Left or Right Boundary Condition, 
Second-Order Accurate Scheme 

x 
Exact 

solution 
Numerical 

solution x 
Exact 

solution 
Numerical 

solution UR-UL 

0.00 1.0000 1.0000 -10-16 0.50 2.7182 2.7132 10-15 
0.05 1.1051 1.1044 0 0.55 3.0041 2.9990 10mJ5 
0.10 1.2214 1.2199 0 0.60 3.3201 3.3150 0 
0.15 1.3498 1.3476 0 0.65 3.6692 3.6644 0 
0.20 1.4918 1.4890 0 0.70 4.055 1 4.0506 0 
0.25 1.6487 1.6453 0 0.75 4.48 16 4.4776 lo~‘5 
0.30 1.8221 1.8182 lomLS 0.80 4.9530 4.9495 0 
0.35 2.0137 2.0094 0 0.85 5.4739 5.4711 1om’5 
0.40 2.2255 2.2208. 0 0.90 6.0496 6.0476 0 
0.45 2.4596 2.4546 1o-‘5 0.95 6.6858 6.6848 0 
0.50 2.7182 2.7132 10-L’ 1.00 7.3890 7.3890 0 

TABLE I.2b 

Linear Problem with Constant Coefhcients (Oscillatory Case), 
Second-Order Accurate Scheme 

N L2 error Maximum absolute error Convergence order 

101 0.327( - 1) 0.472( - 1) 
201 0.809( -2) 0.117(-l) 2.02 
401 0.202( - 2) 0.291( -2) 2.00 
801 0.504( - 3) 0.728( -3) 2.00 

1601 0.126( -3) 0.182( -3) 2.00 

TABLE 1.2~ 

Linear Problem with Constant Coefficients (Oscillatory Case), 
Fourth-Order Accurate Scheme 

N L2 error Maximum absolute error Convergence order 

200 0.151( + 1) 0.22( + 1) 
400 0.563( - 1) 0.85( - 1) 4.75 
800 0.337( -2) 0.51( -2) 4.06 

1600 0.209( - 3) 0.32( - 3) 4.01 
3200 0.130( -4) 0.20( -4) 4.00 
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TABLE I.?c 6is 

First-Order System of Two Weakly Coupled Equations: 

Dependence of the Error on the Parity of the Number of Mesh Points 

,v L’ error Convergence order N 

1 &I 0.610: ~ 1) 101 0.1:01+ 1) 
200 0.299( -2) 4.35 201 0.606[ - 1) 4.18 
403 3.181( -3) 4.05 401 0.358: -2 j  4.08 
800 0.113( -<) 4.00 801 O.?17( -3) 1.04 

1600 0.713( -6) 3.99 1601 0.133( -4) ‘I.03 

ter of the conditions. For instance, in the aforementioned example with w’ = 1C’. 
exactly the same errors of Table 1.2~ are obtained using one point more or less than 
in the reported calculations. On the contrary, when the coupling is weak, the value 
of the error for N even may become smaller than for (a comparable 1 iv odd. For 
example, the numerical results for problem (4.1.7) in the weakly coupled case 
(0’ = 10’ using even and odd grids are compared in Table I.2c b!,r, The errors for N 
odd are larger than the errors for N even by more than an order of magnitude. II 
must be noted, however, that the theoretical convergence rate is achieved on the 
two distinct sets of even and odd grids. 

In the case of fully uncoupled equations, the singularity makes it impossible to 
use the fourth-order accurate multipoint scheme -with an odd number of grid poick 
The spurious mode associated with the singularity of the matrix is found to be a 
2kvave (h = l/(N- 111, namely, 

'0 

u;= 1 

i 

for / odd, 

for /=2+4/c, 

-1 for j = 4k, 

where k = 1, 2, 3, . . 
The same oscillatory example (4.1.7) has also been solved by means of the sixih- 

order accurate scheme described in Section 2.3, obtaining results always exhibiting 
the expected order of convergence. Such a scheme has been employed on a grid sf 
1600 points to compute the solutions for several values of 0’. The corresponding 
results are reported in Table 1.2d. For CD? = 10’ the maximum absolute error is 
0.33 x 1o-6 to be compared with the value 0.32 x lW3 of the fourth-order acc’uraie 
scheme. 

Exponentid case. Another linear example with constant coefficients considered 
in [lo] is the problem 

u” - O’u = s() cos(gx)). u(O)= 1 and u(ll=O. (4.8.85 
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TABLE I.2d 

Linear Problem with Constant Coefficients (Oscillatory Case), 
Sixth-Order Accurate Scheme 

0.P L2 error Maximum absolute error 

10' 0.22(-11) 0.62(-11) 
lo3 0.39( -9) 0.56( -9) 
10” 0.21( -6) 0.33( -6) 
1oj O.lS(-3) 0.38(-3) 

TABLE I.2e 

Linear Problem with Constant Coefficients (Exponential Case) 

N L’ error Maximum absolute error Convergence order 

200 0.221( -2) 0.557( -2) 
400 0.123( -3) 0.291( -3) 4.17 
800 0.744( - 5) 0.170( -4) 4.05 

1600 0.461( -6j 0.130( -5) 4.01 

TABLE I.2f 

Linear Problem with Homogeneous Boundary Conditions 

N L’ error Maximum absolute error Convergence order 

U’ithour Wilkinson refinerrienl 

100 0.17( -4) 0.38( -4) 
200 0.68(-6) 0.18( -5) 
400 0.18( -5) O.ll( -4) 
800 0.23( -6) 0.15( -5) 

1600 0.52( - 6) 0.33( -5) 

With Wilkinson refinement (two irerarions) 

100 0.17(-4) 0.38( -4) 
200 0.67( ~ 6) 0.18( -5) 4.67 
400 0.31( -7) 0.89( - 7) 4.45 
800 0.17( -8) 0.47( - 8) 4.18 

1600 O.lO( -9) 0.27( - 9) 4.05 
3200 0.64(-11) 0.15(-IO) 4.01 
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The analytical solution is 

The solution is still oscillatory but now it contains rapidly growing and decaying 
components as ~3 becomes large. Problem (4.1.8) with 6’ = 104, ;’ = 80. and 
sO = lo”, has been solved by means of the fourth-order scheme and the numerica. 
errors are reported in Table 1.2e. The convergence rate is again achieved quite 
regularly. Compared with orthonormalization [lo], fcr the same value of lV, the 
linear multipoint method is less accurate but one has to remember that the number 
of mesh points actually used in the Runge-Kutta integration is a multiple of the 
number of declared grid points. 

H0mogeneo:rs bozmdar~~ conditions. In all the previous examples, the linear 
multipoint schemes provide accurate and convergent results without any need to 
resort to the Wilkinson refinement procedure. The next problems illustrate instead 
the importance of the iterative refinement in order to guarantee the convergence for 
general equations and boundary conditions. Steer and Bulirsch have considered the 
following nonhomogeneous equation supplemented with homogeneous bouzldary 
data [35], six also [36 or 191. 

wi.th solution 

11” - d2z1 = 0’ cos2( 7T.x) + 2x2 cos(2?-cs), 

u(0) = 0 and iii I ‘r = 0, 

Problem (4.1.9) with ~5 = 20 has been solved by means of the fourth-order accurate 
scheme. The errors of the numerical solutions obtained without and with Wilkinson 
refinement are compared in Table 1.2f which shows the impressive gain in accuracy 
assured by only two iterations. In comparison with the results provided by varicas 
initial value methods reported in [ 191, the proposed method requires iess points for 
obtaining solutions of low accuracy and a comparable number of points for getting 
very accurate solutions. 

4.2. Linear Problem brith Variable Coe])‘kieuts 

4.2. I Homogeneozts Equation with a Gaussian Soiutiol? 

The first example with variable coefficients is the two-point boundary vake 
problem 

Ic”‘-{.x2- l)u=O, u(0) = 1 and l4ib) = e-h’ 2. (4.2.1 ) 
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suggested by Scott and also considered in [22, p. 681. The general solution of the 
differential equation is 

+) = Ae-.&2 + Be-“32 
* x 

! 

& dy’. (4.2.la) 
0 

With the conditions prescribed in (4.2.1), the solution is u(x) = c”/ for any 
value of b. However, when b is not small, e.g., b > 6, it becomes difficult to solve 

TABLE II.1 

Homogeneous Linear Equation with Variable Coefficients 

N L’ error Maximum absolute error Convergence order 

100 0.21( -4) 0.26( -4) 

200 0.96( -6) 0.12( -5) 4.5 
400 0.52( -7) 0.60( - 7) 4.2 
800 0.31( -8) 0.34( -8) 4.1 

1600 0.19( -9) O.?l( -9) 4.0 

TABLE II.2 

Holt Equation (m =0, c(= 1) 

Fourth-order linear 
multipoint method 

Osborne Chasing method 
x h = ljloo h = l/loo h = 1,‘40 h = l/80 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

O.lOOO( +Ol) 
0.2593( + 00) 
0.3455( -01) 
0.1987( -02) 
0.4590( - 04) 
0.4188( -06) 
0.1409(-08) 
0.1821(-11) 
0.8825( - 15) 
0.1597( - 18) 
0.1058( -22) 

0.9999876( +00) 
0.2693404( + 00) 
0.3456397( -01) 
0.1988532( -02) 
0.4595871( -04) 
0.4125652( -06) 
0.1413020( -08) 
0.1827268( - 11) 
0.8863389( - 15) 
0.1605597( - 18) 
0.1082885( -22) 
0.2713141( -27) 
0.2521085( -32) 
0.8677126( -38) 
0.1105113( -43) 
0.5203999( - 50) 
0.9055032( -57) 
0.5818867( -64) 
0.4179442( - 72) 

0.9999999( +oo) 0.100ooo000( + 01) 
0.2593425( +00) 0.259342547( +00) 
0.3456405( -01) 0.345640463( -01) 
0.1988528( -02) 0.198852332( -02) 
0.4596120( -04) 0.459582911( -04) 
0.4137580( -06) 0.412596333( -06) 
0.1231637( -08) 0.140732769( -08) 

-0.1011097( -08) -0.304898194( - 10) 
-0.1448407( -08) -0.462611063( - 10) 
-0.1637120( -08) -0.525582396( - 10) 
-0.1352774( -08) -0.444881792( - 10) 

0.1121146( -08) 0.331291618( -10) 
0.6748801( - 16) 0.158927845( - 16) 
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the problem by means of superposition methods. This is not the case for the linear 
multipoint schemes combined with the Wilkinson refinement procedure For 
imstance, the fourth-order scheme applied to the problem with b = IO yields soiu- 
lions with the numerical errors indicated in Table II.l. The effect of two Wilkinson 
iterations is dramatic: the error is decreased by several orders of magnitude with 
respect to the simple scheme without iterative refinement and the convergence rate 
is 1r4 instead of linear. 

A boundary value problem very similar to the previous one is the Holt equation 
;23, p. SS] 

u”-(2n1+ 1 +x’)u=O, u(0) = x, u(~x’j=o. (4.-a.?*) \ --b, 

The case FPI = 0, Q = 1 has been solved by means of the fourth-order scheme, The 
right boundary condition is imposed at the large but finite distance I, = I2 and 
two meshes with h = l/40 and Ir = l/80 are considered. The numerical results are 
compared in Tables II.2 with those calculated by Osborne and by means of the 
so-called chasing method [23] on the mesh h = l!lOO. 

The absolute local accuracy assured by the present method is greater than in 
earlier computations and is uniform over the integration interval. On the contrary, 
in the exponentially vanishing tail, the relative local error (ratio of the local Ivalue 
of the numerical error to the value of the exact solution) is smaller using the initial 
value schemes. Two Wilkinson iterations are performed in the considered example. 

4.23. 4 Problem with a Turni~zg Point 

The last variable coefficient example is the problem [16] 

Ed’ + Xl1 = -En2 cos(Tc.r) - Tu sin(nlcl, 

l&l)= -2, u( 1) = 0. 

The solution of the problem is 

(4.2‘3 i 

(4.2.3aj 

which shows a turni~zg point or sharp transition lajyer near x = 0 en E 3 0. Finite 
element and finite difference methods are expected to fail for s problem and 
cannot compete with algorithms designed for solving singular erturbation 
problems. For instance, the computer code COLSYS ES]. based on a spline 
collocation method with @-accuracy, solves the problem for E= lo-” within an 
absolute error of 10e6 using a nonuniform grid of 256 subintervals. By contrast. the 
fourth-order multipoint scheme combined with the Wilkinson iterative method 
provides the results reported in Table II.3 for the case E= lo-‘. The maxim!Jm 
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TABLE II.3 

Variable Coefficient Problem with a Turning Point 

N L’ error Maximum absolute error Iterations 

600 0.212( - 1) 0.282( - 1) 2 
800 0.117(-l) 0.158(-l) 2 

1000 0.392( - 2) 0.528( -2) 3 
1200 0.152( -2) 0.272( - 2) 6 

absolute error for N= 1200 is 0.27 x lop2 and can be compared with the value 
0.27 x 10P3 provided by the orthonormalization method using 2000 projection 
points and an adaptive sixth-order accurate Runge-Kutta integrator. Six Wilkinson 
iterations are performed in the case N= 1200. For liner grids, the equation system 
becomes so ill-conditioned that the iterative refinement procedure fails to converge. 
Of course, better numerical results are allowed when the linear multipoint scheme 
is employed using a stretched interval via a transformation such as X= (X + 1 )J 
[16]. However, the attention is limited here to a straightforward application of the 
new schemes without problem-dependent modifications. Anyway, it should be not 
difficult to devise the adaptive transformations most convenient for dealing with 
problems displaying a singular behaviour (see the example 4.5). 

4.3. Nonlinear Problems 

The potential of the linear multistep methods in the nonlinear case is assessed by 
applying the standard Newton method to the solution of a number of nonlinear 
boundary value problems. The Jacobian is always evaluated analytically. It is 
worthwhile mentioning that in the proposed formulation the Newton method can 
handle any kind of nonlinear conditions F(y(a), y(b)) = 11, straightforwardly; in this 
case the Jacobian of F enters the top row (gi, g,, . . . . gN) of the matrix of the 
linearized problem. In any case, the matrix associated with the linearized system of 
equations has the same bordered multidiagonal profile encountered for linear 
problems. All the results shown in the present section have been obtained without 
any need to resort to the Wilkinson refinement procedure. 

43.1. A Singular Perturbation Problem 

A nonlinear example of singular perturbation type is the following boundary 
value problem [37, p. 4361 

Ed = 1 - (u’)2, o<x< 1, u(0) = G!, u(l)=B, (4.3.1) 
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the boundary data of which are assumed to satisfy the condition 1~ - ,!$ < i. The 
derivative ~1’ of the exact solution is given in terms of E, ‘zY and $ by 

\rt;here /,r = eUJ -- 2 + i I i. The numerical results for this variable, which becomes discon- 
tiruous at s = (o! - p + 1);2 as E -+ 0 + [37, p. 436], are reported in Table HI.; for 
the case E = 0.05, 2 = i, and p = 1. Using the initial guess U(Y) = x + (,8 - r )X in the 
nonlinear procedure, the relative error becomes less than ic)- lo in 9 iterations 

The capability of the proposed approach in handling equations with singular 
coefficients is investigated against the following nonlinear problem [22, p. 36]: 

The equation in (4.32) becomes singular at the left extreme x = 0 of the integratzon 
interval, In order to apply the fourth-order multipoint scheme to this problem, the 
discrete equations associated with molecules involving the singular point s=Oi 
namely, the left three-point molecule and the first four-point molecule, must be 
derived by approximating the (nonsingular) equation 

2~” -I- de” = 0, x -+ 0. (4,:,2’, 

ed by the application of the 1’Hospital rule to the original differential 
equation. The solution to the nonlinear problem (4.32) can be expressed m closed 
analytical form [22> p. 361 

The value of the integration constant C satisfies the equation SC/(C i 6 )’ = I. 
Ht can be readly shown that for 6 in the range 0 < 6 < 2 there are two distkct 
solutions. The two roots C, expressed in terms of the parameter 6 are - 

c,=4G3+2.,@zq. 

N 

TABLE III. I 

Nonlinear Problem of Singular Perturbation Type 

L’ error Maximum absolute error iterations 

200 0.233( -5) 0.103( -4) 9 
400 0.133( -6) 0.612(-6) s 
800 0X23( -8) 0.3771 ~ 7) 9 

-_- 
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For S = 2, C = 2 and only one solution exists, whereas for b > 2 there is no solution. 
Starting from the initial guess U(X) =0 and taking b = 1, the Newton method 
converges to the solution characterized by the root C . Four iterations are enough 
to obtain a relative error < lo- l2 in the nonlinear iteration. The errors of the 
numerical solutions with respect to the exact solution are given in Table 111.2. They 
demonstrate the correctness of the proposed formulation of boundary value 
problems also in the presence of a singularity in the equation, without the need of 
matching the numerical solution to an analytic expansion in the neighborhood of 
the singularity. Again, the most convenient method for problems of this kind is the 
COLSYS code, which solves a problem almost identical to (4.3.2) with an error of 
lo-’ using four subintervals [S]. 

4.3.3. Blasius Equation 

A very well-known equation of the boundary layer theory is the Blasius equation 
(see, e.g., [38, p. 135]), 

ly” + *l/Y = 0, *(o) = 0, *‘(o j = 0, lp(co)= 1. (4.3.3) 

There are several ways of approaching the numerical solution of this boundary 
value problem. A first possibility is to introduce the variable tlelocity u = $’ and to 
write a system of mixed-order coupled equations for the variables u and $. 
A numerical scheme based on this representation of the problem is described in 
[38, p. 1871. Another possibility is to introduce the variable uorticity [ = I+V’ and to 
express the Blasius problem again as a mixed-order system for the variables [ and 
$. A disadvantage of both mixed-order formulations is that the centering of the 
discretization for the different equations is not immediate, especially when higher 
order approximations are to be developed. This drawback is not present when the 
Blasius equation is instead formulated as a system of three first-order equations by 
introducing simultaneously the variables velocity u = $’ and vorticity [ = U’ = $“, to 
give 

i 

.SC 
(‘= -*(“, <d-x= 1, 

0 

u(O)=0 or u(a)= 1, 

$(O)=O. 

TABLE III.2 

Nonlinear Problem with End Singularity 

N L' error Maximum absolute error Iterations 

50 0.55(-7) 0.15(-6) 4 
100 0.41( -8) 0.12( -7) 4 
200 0.30( -9) 0.80(-9) 4 
4oil 0.28(-10) 0.60(- 10) 4 
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The fourth-order accurate scheme is used to solve such a system over the fin& 
interval [O, s % ] where .xX = 5, 6, 7, starting from the initial guess 

Using up to 850 grid points, it is possible to determine rhe value of the ~211 
vorticiiy t(O) with a precision of eight decimal figures (see Table 111.3). The solution 
on the grid with 205 points and taking s, = 6 is identical with the Howart?; 
soiution reproduced in [38, p. 1391. 

Consider now the equations governing the steady flow of a viscous incom- 
pressible fluid which is set into motion by the rotation of a disc cf infinire radial 
extent 138. p. 1021. They may be expressed as 

F” = F’H+ F’- G”, 

G” = G’H + 2FG, 

H” = H’H + P’, 

H’= -2F. 

ere, the prime denotes the derivative with respect to the variable ; which 
expresses the dimensionless distance from the surfase of the disc. The boundary 

conditions supplementing the system of equations 8re 

F(5) = 0, F( (x ) = 0. 

G(0) = 1: G(x)=@: 

H(0) = 0. 

The last equation implies the equation H” + 2F’ = 0, which can be combined with 
the third equation to give P’= -2F’- HH’. Thus, the function P(i) cam be 
expressed in terms of F(i) and H(i) by means of the relationship 

TABLE III.3 

Blasius Equation: Wall Vorticity 

100 0.469615 10 0.46960041 0.469j99SS 

zoo 0.46964514 0.46960049 046959998 

ml 0.46964514 0.46960049 ii.46959999 

400 0.46959999 



with its own condition. Now, defining the vectors 

1 
EH+ F’-G2 

E 
J’ = and f(Y)= [ 1 KH+2FG , 

K 

-2F 
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P= PO - 2F- H’/2, where P, is an arbitrary constant. It follows that the third 
equation can be eliminated from the system, obtaining a set of three coupled 
equations for the three unknowns F, G, and H, supplemented with the five specified 
boundary conditions. The problem is then reformulated as a system of five lirst- 
order differential equations by introducing the variables E = F’ and K = G’. After 
deriving the integral conditions for E and K from the boundary conditions 
originally prescribed, one obtains the set of equations and conditions 

E’=EH+F’-G2, 
J 
‘= Edi’=O, 
0 

F’ = E, F(0) = 0 or F( ~8) = 0, 

s 

K 
K’ = KH + 2FG, Kd<= -1, 

0 

G’=K, G(O)= 1 or G@j=O, 

H’= -2F, H(0) = 0. 

Therefore, the introduction of the integral conditions allows providing each variable 

the nonlinear problem is rewritten in the canonical form dy/d[ =f(yj and can be 
solved numerically by means of any one of the schemes previously described. For 
instance, the fourth-order accurate multipoint scheme is employed taking [, = 20 
and using the four grids with N= 50, 100, 200, 400. The computed results are 

TABLE III.4 

Flow near a Rotating Disc 

Err(G) Err(H) 

0.25( - 1) 0.67( - 1 ) 
0.97( - 3) 0.45( - 2) 
0.37( -4) 0.15( -3) 
0.16( -5) 0.39(-5) 

E(O) = F’(0) K(O) = G’(0) 

0.510585 -0.6152113 
0.5102457 -0.61587339 
0.5102336 -0.61591817 
0.5102327 -0.61592174 
0.510233 -0.6159220 
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compared in Table III.4 with the very accurate values provided by the following 
representation [39] of the exact solution for the variables N and G, 

,I = 1 n=1 

The precise value of E is not known and its approximation depends on the number 
of terms which are retained in the summation. In the comparisons, the first 40 terms 
have been included, using for the coefficients A, and B,, the values given in [39] 
which provides a = -H( 3~‘) = 0.884474. Table III.4 indicates that the accuracy ci 
the (fourth-order) solution over a mesh of 400 points is comparable with that one 
of the series expansion truncated after the first 40 terms. 

4.4. Higher Order Equafims 

4.4.1. Fourth-Order Norzlineur Equation 

The appropriateness of the integral conditions for higher order differential 
equations is first verified against the following nonlinear fourth-order equation 

$7”‘. [$“‘sin($“e’h”““*)+ 11-l =+), (4.4, B ‘j 

The nonlinear first-order system equivalent to Eq. (4.4.1) is integrated over the 
interval CO, l] assuming a solution of the form rl/(xj = e’ and using Newton 
method. Starting from the initial guess I) = 1, four iterations are required to obtain: 
a convergence error < 10 -I’ with N = 50, 100, 200 points. The errors ‘of the numeri- 
cai solutions with respect to the exact solution are shown in Table IV.1. The 
theoretical order of convergence of the multipoint scheme is therefore achieved also 
in this higher order and highly nonlinear example. 

4.42. Skth-Order Linear Equation 

This section on higher order nonhomogeneous problems is terminates by 
considering the following sixth-order, variable coefficient, equation, 

TABLE IV.1 

Fourth-Order Nonlinear Equation 

A Maximum absolcte error i’ error 

50 0.529( - 8 ) 0.33-/( - 8 j 
100 0.321( -9) 0.108( -9) 
100 0.199( - 10) 0.129(- 10) 
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Equation (4.4.2) is supplemented by the set of boundary conditions typical of a 
sixth-order problem as described in Section 3.2. The source term s(x) is defined by 
choosing the solution to be $(x) = e4-‘. The numerical results given in Table IV.2 
indicate that the order of convergence of the linear multipoint scheme is not 
affected by the differential order of the problem provided the proper integral 
conditioning is taken into account. 

4.5. On-Somnzerfeld Equation 

In view of the good numerical performances demonstrated by the fourth-order 
accurate scheme, it is employed also as a basic linear solver for the calculation of 
eigenvalues and eigenfunctions. This section describes the application of the 
methodology based on the use of integral conditions to a classical problem of 
hydrodynamic stability, namely, the determination of the most unstable mode in 
plane flow when the Reynolds number R is large. 

The mathematical statement of this problem is the well-known Orr-Sommerfeld 
equation, 

(D2-a’)‘$-ictR[V(.y)-c](D2-r?)$+ictRV”(x)$=O, (4.5.1) 

supplemented with the no-slip boundary conditions 

Here, the symbol D and the prime denote both the differentiation with respect to 
X, the coordinate normal to the plane walls, 01 is the wavenumber in the 
streamwise direction J, and c is the complex eigenvalue appearing in the expansion 
of the perturbation Y(x, ~1, t) = $(x) eia(Jpc’! For Poiseuille plane flow, the unper- 
turbed velocity V(X) assumes the parabolic profile V(x) = 1 -x2. If the eigenvalue 
problem (4.5.1))(4.52) is solved as a fourth-order problem, the boundary condi- 
tions (4.5.2) can be imposed without difficulties. Such an approach has been 
followed, for instance, using a finite element method with Hermite local basis [40] 
and using a spectral approximation with Chebyshev polynomials [41,42]. Another 
method of solution is to transform the fourth-order equation into a system of two 
second-order equations by introducing the tlorticity variable [ = a, - ug in conjunc- 

TABLE IV.2 

Sixth-Order Linear Equation 

1v Maximum absolute error L' error Convergence order 

200 0.59( -~5) 0.28( - 5) 
400 0.37( -6) 0.17(-6) 4.00 
800 0.23(-7) O.ll(-7) 4.01 
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tion with the srreatn ,funciion $. The conditions supplementing such an equation 
system can be found following the analysis given in [28]. The present work being 
devoted to a first-order formulation, the Orr-Sommerfe!d problem cvill be refor- 
mulated by introducing the additional variables - < = ;’ and d = II/‘. The complete set 
of conditions for the variables (<, [, 4, $) is determined by a reasoning similar to 
that followed in Section 3.1 where the integral conditions appropriate to a fourth- 
order boundary value problem have been obtained. There is, however. 
a slight difference due to the fact that the variables with missing baundary 
conditions are defined here in terms of $ through the relationships 

L=(-D’-ta’)l) and ~=~(-~$+j/, 

so that the Green identities for the operators ( -i)’ + Y’) and D( -I?” + ‘2’) are 
necessary to determine the integral conditions for ; and 5: respectively. The !*dlI set 
of first-order equations with the corresponding conditions is found to be 

.fl 

\ -h. C cosh( ax j iix = 0, 
i 

4’ = -; + &j. q+l,=O or &+lj=O. 

v = 4, $(-l)=O or $(+l)=O, 

where @Ix. r) = a2 -+ iuR[ V(x) - c]. By introducing the quantities 

(4..9.>) 

the differential sys~ tei 

0 Cf'(x. a) 0 ixRl"'(X) 

1 0 0 0 
.4(sj = 

0 --! 0 2 

0 0 1 0 

m can be written in the notation of Section i 
The discretization over a grid with N points provides the generalized eigenvalue 
problem (A-&)g=O, where y is a 4iV-vector, whereas A and are 4N x 4N 
matrices. A single eigenvalue and the associated eigenfunction can be evaiuated 
using the standard shifted-inverse-power iterative method. For high values GE the 
Reynolds number, the solution provided by the backward and forward subs!itu- 
lions can be, however, so inaccurate that the iterative method may fail to converge. 
In order to guarantee the converge also in these difficult situations, it is possible to 
resort to the Wilkinson refinement procedure (see section 2.4). For computationai 
efficiency, the solution of the linear system will be refined oniy when the error due 
to the ill-posedness of the system is greater than the relative error in the inverse 
power iteration. 
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TABLE V.1 

Eigenvalue of the OrrMommerfeld Problem for Plane 
Poiseuille Flow at R = 10’ and 5 = 1 

N c 

100 0.23752 89394 + iO.00373 95295 
200 0.23752 66440 + iO.00373 96594 
400 0.2375264984+ iO.00373 96698 
800 0.23752 64894 + iO.00373 96705 

141,421 0.23752 649 + iO.00373 967 

Note. Coordinate transformation parameter a = 1.4. 
Initial eigenvalue for the shifted-inverse-power method 
E = 0.24 + iO.0038. 

The eigenvalue associated with the most unstable mode for Poiseuille plane flow 
has been calculated using a uniform grid over the entire interval [ - 1, 11 for 
moderately large values of R. For R = 10” and R = IO6 and a wavenumber CI = I, 
the agreement of the present results with the values published in the literature 
[41,42, 151 is fully satisfactory. The eigenfunction of the considered mode being 
symmetric, the eigenproblem can be solved on the half interval [0, t], using the 
conditions appropriate to the even subproblem, namely, 

((0) = 0, 

-1 

! < cosh( ax) & = 0, 
0 

d(O)=0 or dw=o, 

*t1j=o. 

Numerically identical results have been obtained on the two intervals. At larger 
values of the Reynolds number a great reduction of the number of grid points to 

TABLE V.2 

Eigenvalue c and Transformation Parameter a in the 
Orr-Sommerfeld Problem for Plane Poiseuille Flow, m = 1 

log,, R c a 

4 0.23752 64894 + iO.00373 96705 1.4 

5 0.1459247902-iO.01504 20430 2.0 
6 0.06659 25239-iO.01398 32675 2.5 
7 0.03064 12978 - iO.00726 04873 3.0 
8 0.01471 134 - iO.00351 239 3.5 
9 0.0065663030-i0.0016600213 4.0 
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be used for a fixed accuracy is afforded by introducing the stretching of the variable 
.Y suggested in [43] as 

s = x(X) = 
tanh(aX! 

tanhfa) ’ 

where Q is an adjustable parameter. For example, using the stretching a = I,4 for 
R = 10”. the value of c converges to the very accurate estimate given in [41,42] in 
the manner shown in Table V.I. The fourth-order accurate scheme with 400 pokrts 
has the same accuracy of a spectral calculation with 25 Chebyshev modes. 

When R is higher, the value of the stretching parameter a must be increased. The 
values of c and CI for R in the range 10’~ R < IO9 are given in Table V.2. ‘The 
accuracy of the eigenvalues calculated on a mesh of 800 points is greater than in 
the orthonormalization method on finer grids. 

The convergence of the eigenfunctions for the cases R = 10’ acd R = 10’ to tk 
reference solutions provided by Davey [15] is shown in Tables V.3 and V.4, by 
comparing the values of the real and imaginary parts of $ at some selected points. 

TABLE V.3 

Selected Values of the Eigenfunction of the Orr-Sommerfeld Problem for 
Plane Poiseuille Flow with R = 10” ard r = 1 

Linear multipoint method 

Cl11 
N = 400 :v = 800 it’ = 700 

0 
0.10 
0.20 
‘0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.9 1 
0.92 
0.93 
0.94 
0.95 
0.96 
0.97 
0.98 
3.99 

G,99&72 
0.976933 
0.947462 
0.904969 
0.848079 
0.774779 
0.682077 
0.565123 
0.414020 
0.396177 
0.317634 
0.353173 
0.338029 
0.319253 
0.292479 
0.235163 
G.152?51 / 
0.059842 

G 

0 
O.GOO161 
0.000646 
0.001467 
0.002640 
0.004196 
0.006182 
0.008679 
0.012865 
0.016380 
0.014OO3 
0.017708 
0.018515 
0.018894 
0.021545 
0.034693 
0.043859 
0.02’454 

-0.006412 
0 

I 
0.994274 
0.976934 
0.947466 
0,904972 
0.84808 1 
0.774782 
0.682079 
0.565125 
0.41402 1 
0.396177 
0.377636 
0.358173 
0.338028 
0.3 19256 
0.292486 
0.235 170 
0.152351 
0.059340 

0 

0 
0.00016: 
O.GOO646 
O.GG1467 
O.OG2640 
0.004196 
0.006182 
0.008679 
0.011864 
0.016389 
G.O17OG? 
0.017708 
0.018515 
0.018891 
0.02 1544 
0.034693 
0.043868 
0.022454 

- 0.0064i 7 
G 

1 
0.994275 
0 976935 
0.947467 
0.904973 
0.848082 
0.774783 
(5.682080 
0.565125 
0.414031 
0.396177 
0.377635 
038173 
0.338027 
0.319256 
0.292490 
3.735171 
0.15235i 
3.05984.0 

G 

0 
G.000161 
O.OGO646 
O.oG1467 
0.00264C 
0.00~196 
O.O0618?. 
G.Go86 79 
0.011564 
0.i21638Q 
G.Glxx;s 
0.0 17708 
0.018515 
O.GlS894 
0.021543 
0.034694 
0.043870 
0.0224’5 

-O.G064!7 
0 



352 QUARTAPELLEAND REBAY 

TABLE V.4 

Selected Values of the Eigenfunction of the OrrGommerfeld Problem for 
Plane Poiseuille Flow with R = lo9 and DL = 1 

x 

Linear multipoint method 

Cl41 
N=400 N=800 N = 24000 

ti, tii *, ti, (I/, *, 

0 1 0 
0.900 0.479059 0.001682 
0.910 0.463504 0.001738 
0.920 0.44743 1 0.001798 
0.930 0.430794 0.001861 
0.940 0.413527 0.001933 
0.950 0.395547 0.002012 
0.960 0.37673 1 0.002102 
0.970 0.356894 0.0022 12 
0.980 0.335708 0.002360 
0.990 0.3 12405 0.002616 
0.99 1 0.309884 0.002658 
0.992 0.307325 0.002710 
0.993 0.304603 0.002861 
0.994 0.301615 0.002168 
0.995 0.302998 0.001796 
0.996 0.3029 19 0.018106 
0.997 0.261235 0.043246 
0.998 0.171739 0.029029 
0.999 0.066752 -0.005564 

1 0 0 

1 
0.479061 
0.463504 
0.447432 
0.430794 
0.413528 
0,395547 
0.376731 
0.356894 
0.335708 
0.3 12405 
0.309884 
0.307326 
0.304604 
0.301609 
0.302995 
0.302941 
0.261251 
0.171740 
0.066749 

0 

0 
0.001682 
0.001738 
0.001798 
0.001862 
0.001933 
0.002012 
0.002102 
0.002212 
0.002360 
0.002616 
0.002658 
0.002710 
0.002863 
0.002170 
0.001773 
0.018100 
0.043261 
0.029030 

-0.005571 
0 

1 
0.47906 1 
0.463504 
0.447432 
0.430795 
0.413527 
0.395547 
0.37673 1 
0.356894 
0.335708 
0.312404 
0.309883 
0.307325 
0.304604 
0.301606 
0.302993 
0.302941 
0.261255 
0.171740 
0.066749 

0 

0 
0.001682 
0.001738 
0.001798 
0.001862 
0.001933 
0.002012 
0.002102 
0.002212 
0.002360 
0.002616 
0.002658 
0.002710 
0.002864 
o.ciQ2171 
0.001767 
0.018100 
0.043265 
0.02903 1 
0.005572 

0 

The values of the present solutions at these points have been obtained by means of 
a linear interpolation. 

The great accuracy of the results provided by the proposed scheme using the 
integral conditions jointly with the variable stretching is not surprising when one 
considers that an integrally conditioned vorticity equation was at the heart of the 
asymptotic stability analysis for plane Couette flow undertaken by Davey [44]. 

5. CONCLUSION 

In this paper linear multipoint methods with an even order of accuracy for the 
solution of boundary value problems for ordinary differential equations have been 
presented. The key point which has made it possible to establish the new class of 
numerical schemes is the recognition that the systems of first-order equations stem- 
ming from two-point boundary value problems constitute a category of ordinary 
differential problems quite distinct from that one associated with initial value 



problems. As a consequence, conditions of an integral (nonloca!) type, instead of 
the usual boundary value (localj type, have been found to supplement the system 
of first-order equations, so that the idea of marching in time or using a step-by-s:ep 
integration procedure has been dismissed. The intro uctior, of the concept of nor.- 
local conditions led to outline a simple and unitary numerical fmmework f-or F% 

solution of practically any kind of boundary value problems. With respect to i~tial 
value methods, the new formulation presents the advantage that the number oi 
independent or dependent variables is not increased and that no orthogonalizalioz 
procedure is required. 

The linear multipoint schemes have then been applied to soitje a wide spectru.~ 
of linear and nonlinear test problems. Satisfactory results have been cbtainzd 
without encountering the numerical difficulties faced by simple superposirioz 
methods provided that the Wilkinson refinement procedure is employed in the case 
of stiff equations. The fourth-order accurate multipoint method has also been used 
in conjunction with the shifted-inverse-power iteration method to zomputz eigen- 
-taiues and eigenfunctions of an Orr-Sommerfeld problem when the Reynoids 
number is large. .Although the method has proven to be successful in re5ning t”.e 
eigenvaiule associated with the most unstable mode fo: plane Poiseuille flop,. the 
significance of the proposed formulation for the solution of the gencrzl eigenl/aL?ce 
problem remains to be investigated. 

It can be concluded by emphasizing once more the extreme simplicity. efi,ciencg. 
and reliability of the proposed method, all properties resulting from the fact thar it 
is based on an aigebraically exact representation of the original boundary ~-~AL;.c 
problem. 

The authors are indebted to a reviewer for a number of noi minor comments and suggesticxs 
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